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INTRODUCTION

An engineer confronted with the problem of de signing an autopilot

system for a rocket vehicle whose ratio of length to diameter is moder-

ate to high is faced with a host of new problems. These problems arise

principally from the fact that rocket structures are usually highly flex-

ible because of the requirement for a low ratio of structural weight to

total vehicle weight (usually only 10 percent of the vehicle weight is

made up of structure that can resist elastic deformation of the vehicle

under the various forces to which it is exposed in flight). For such sys-

tems, the control engineer can no longer concern himself only with the

pitch, yaw, roll, and translation of the vehicle to obtain the requirements

that his control system must satisfy, but rather he must broaden the

scope of his analysis to include problems associated with the elastic

structure, both to discover the control system requirements and to

assure the compatibility of the control system with the dynamic charac-

teristics of the elastic structure. Specifically, if he does not consider

the effects of the elastic structure on the control system requirements,

he may well design a system that will be unstable when actually installed

in the vehicle; if he does not consider the compatibility of the control

system with the dynamic characteristics of the elastic structure, he

may design a stable control system that will cause structural failure

because of dynamic elastic deformations arising from this operation.

The above problems are not academic, but very real, and occur almost

universally in rocket vehicle design. The basic reason for this is that

the highly elastic heavy structure will usually have an elastic response

mode whose frequency falls well within the control frequency band and

cannot be neglected, in contrast to conventional aircraft design where

the control band can usually be chosen well below the important elastic

response frequency bands.

One mathematical formulation of a problem within the framework

outlined above was stated in the original procurement request, and is



in essence repeated here, paraphrased to conform to the particular

problem considered.

The steady-state missile dynamics are represented by a homo-

geneous system of differential equations.

x=Ax

where x is an n-vector and A an n×n matrix, together with an initial

state x(0) = x °. The system expresses various forces and torques due

to structural and aerodynamic effects. The time interval 0 -_t _-T for

the problem is assumed to be sufficiently short that A is considered

constant. A scalar disturbance y is introduced to represent wind effects

in the missile where, analytically, y_ y(t) is restricted to a class of

functions F. In order to maintain stability under a disturbance as des-

cribed above, control elements are introduced into the system as a

scalar _ in some class of functions _.

The system is now rewritten to include y and d# as

= Ax + a@+by , x(O) = x °

where a and b are constant n-vectors. Let L. be a given set of constants
I

such that Ixil < L i, i = 1,2,'''n assures that the system remains stable.

The basic control problem may now" be posed as an optimum

control one; that is, a control must be found that will ensure x i = I I

for all functions y in the class where L_:"is the least such bound for
I

each i. Since the control law which gives L"J_ may be different for each i,
1

S-

it maybe necessary to specify constraints on Z.. For example, if
;,,. 1

L = cL where 0 < c < i, the control law that minimizes c could be
I i ;,,_

determined. Or the control law that minimizes L. only while satisfying
3

I xil < L i, i = l'''n could be found.
p

The particular problem formulation for the present investigation

is to find _ that realizes

rainmax llxll

Z



Because of the difficulties inherent in this particular version of the

minimax problem, a related formulation is used

max mir_ lim

ycF _ n--_o

l/n

where Q is a nXn positive semidefinite matrix.

The rationale behind the modified form is discussed in Section 2,

wherein the problem is specialized to determining dd for

T

min f[x(t)" Qx(t)]ndt
_*_ o

which is related to finding _ for

T

rain _dZv(X) + g %h2

(1)

dt (2)

where _d2v is a positive semi-definite rnultinomial form. As a first ap-

proximation to the minimax problem, criterion (I) is used with n = i,

resulting in a linear controller; the derivation of the design procedure

for the linear approximation is presented in Section 3. Better approxi-

mations are obtained using criterion (2); these are discussed in Section 4.

The design procedure developed in Section 3 has been programmed

for the IBM 7094; the programs are discussed in Section 5, as are the

results of applying the design procedure to a five-dimensional model of

the booster (taken to be two linked rigid bodies). The controllers thus

designed were simulated on the IBM 7094; the results of the simulations

are presented in Section 6.

A more complete mathematical model, including the effects of

body bending, sloshing, and sensor dynamics, is developed in Section i.

The 26-pole model derived is about as large as the capacity of the com-

puter will allow without modification of the programs, and is also about

as small as it could be to be a good representation of the physical

system.



A recapitulation of the results of this investigation_along with
suggestions for further study, is given in Section 7. In addition,several

appendices are included for background material, for detailed deriva-
tions, or because they were published as papers based on the material

generated under this contract.

4



1. MATHEMATICAL MODEL

In the analysis or synthesis of any physical system, one of the

first and most important steps is the selection of an appropriate

mathematical model. For initial synthesis and feasibility analysis,

a rather gross approximation to the actual dynamics may suffice; for

final analysis and simulation, a more faithful description is usually

necessary. When the physical object is as complex as the non-rigid

aeroballistic vehicle treated herein, the problem of choosing the model

is especially difficult, not necessarily from the point of view" of the

dynamic description, but rather from that of determining how" much

fidelity is required to achieve a sufficiently accurate assessment of

the behavior.

The model derived in this section is intended to be complete

enough for an accurate determination of the dynamics of the vehicle,

and yet of a low enough order to allow" computer simulation. Included

in this model are:

i) Aerodynamic forces (considered to be located at the vehicle

center of pressure).

Z) Inertia reaction torques on vehicle motion due to nozzle

dynamics ("tail wags dog" effect).

3) A flexible vehicle (bending modes).

4) A liquid fuel (sloshing modes).

5) Crosscouplings of bending and sloshing modes with rigid

body modes because of engine thrust.

6) Couplings of bending and sloshing modes with engine

dynamic s.

7) Sensor dynamics.

Not included are the effects of:

i) A distributed aerodynamic force on vehicle motion.

2) Flutter due to aerodynamic forces. (This is an aeroelastic

phenomenon, to be accounted for during the airframe struc-

ture design phase; it is not a control problem. )

3) Bending motion on aerodynamic forces.

i-I



The coordinate system definition and the definition of important physical

constants are shown in Figure i-i. The moving coordinate system is

located with its origin at the cg of the booster, oriented as shown. If

the vehicle were rigid and the nozzle undeflected, the x-axis and the

center line would coincide; the z-axis is in the plane of the local vertical

and the velocity vector, which is also assumed to be the plane of the

deflected booster centerline. The angle w denotes the rotation of the
center line due to a deflection of the nozzle in the absence of bending;

in this case the center line is taken as the line through the centers of

gravity of the vehicle minus nozzle and of the nozzle alone.

EQUATIONS
The first four equations, which describe the motion of the vehicle,

may be obtained through the use of Figure i-i, by summing forces and

moments; Table l-i is a list of symbols. (Note that _, _, _g, and
have been assumed small. )

Normal Force Equation

The normal force equation is found by summing forces in the

direction normal to the missile's longitudinal axis (z direction) and

equating it to the acceleration in that direction.

Maz = Naa + Mg cos @ 9 + (N - D)w - T_g + Tc _ (I-I)

Axial Force

The force along the longitudinal axis of the missile (the x direc-

tion) is

Ma = T + T - D - Mg cos 0 (l-Z)
X C

External Moment Equation

The moment equation is found by summing the moments about the

center of gravity of the missile

I_ = N fp _ + Dv + N_pW - (T + Tc)Ug + Tfg_g - Tcig_ (i-3)

The following kinematical equation will be useful:

I-Z



LOCAL VERTICAL

IANGENT TO REFERENCE TRAJECTORY

BOOSTER UNDEFLECTED CENTER LINE
I X LOCKED

CENTER LINE OF RIGID BOOSTER

NOZZLE DEFLECTED

C.G. OF TOTAL

BOOSTER CENTER LINI

/
I

/

I
/
I

GIMBAL POINT

NOTE: YAXIS IS OUT OF THE X, Z PLANE TO

FORM A RIGHT HAND COORDINATE. SYSTEM

NoNz%_L_._IMBAL POINT_ /C,G. OF TOTAL BOOSTER

_ ,_n I_ ./0 ___ _pX._.l _AERODYNAMICCENTERoFPRESSURE

Figure t-1. Coordinate system for analysis of the flexible booster,

t-3
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_Bi

COBi

- acceleration in direction identified by subscript

angle of actuator deflection

angle between reference trajectory and missile's longitudinal

axis

- angle of attack

- crosswind acceleration

- angle of nozzle deflection

- normalized deflection of ith bending mode

- normalized deflection of ith sloshing mode

- acceleration of gravity

- normal aerodynamic force per unit of angle of attack

aerodynamic drag

thrust of inactive engines

thrust of active engines

- nominal absolute velocity of missile (c. g. )

- total mass of missile

- total moment of inertia of missile

- mass of active engines

- moment of inertia of active engines

th
- effective mass of fluid for i sloshing mode

th
- effective location of mass of fluid for i sloshing mode

- damping ratio of ith sloshing mode

- natural frequency of ith sloshing mode

- damping ratio of ith bending mode

- natural frequency of ith bending mode

Table l-l. Nomenclature.
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i()

¢i()

_n

_g

_p

B n

K n

K a

8

F.
1

V

W

K s

T S

%

ks

normalized slope of ith bending mode at location identified by

subscript

normalized deflection of ith bending mode at location identified

by subscript

distance between center of mass of engine and the gimbal point

(positive for gimbal point forward of center of mass)

distance between center of mass of missile and the nozzle

gimbal point (positive for gimbal point aft of center of mass)

distance between center of mass of missile and center of

pressure (positive for c.p. forward of c.g.)

friction damping factor for nozzle travel

effective spring constant between nozzle and case

effective spring constant of actuator arm

- angle between local vertical and reference trajectory

- _rn. (ri)2 d m = m.1 (ri)2
1

where: r. is the radius of gyration of the sloshing fluid. Thei

integration is taken over the effective mass of the sloshing

fluid (mi).

- z-axis intercept of the center line of rigid body with nozzle
deflected

- rotation of center line of rigid booster due to nozzle deflection

- static sensitivity of actuator

actuator time constant

actuator natural frequency

actuator damping ratio

Table l-1. Nomenclature (continued).
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Normal Acceleration

The vehicle acceleration in the z direction is given by:

a = -V_ - a _ + V_ + V_
Z X "vV

(1-4)

The remaining equations require some explanation of the repre-

sentation used for the bending and sloshing dynamics. Both effects re-

sult from the motion of continuous media, and the fundamental dynamical

equations. Application of the technique of separation of variables to

these Dartia] differential _q11_tin_s re_u!ts in an infinite sequence of sets

of total differential equations for each. Each set in the sequence consists

of differential equations in spatial coordinates and a differential equation

in time; the solution to such a set is called a mode. For a detailed dis-

cussion, see the references. The resulting time equations are:

Body Bending Equation

The bending equations are found by applying Hamilton's principle.

This yields for, the kth bending mode,

M _ik + Z_Bk WBk _ik + (_Bk) qk - M (ax + g cos 0) kkg v

- (E F i kkx. ) (_ + _) + >2' Z F. k k . qjTCkg _g
I I j i I kx.• 1 Jxi

X m_ [Okx _ - (kkx f + kkg)(ax + g cos O) _]

(i -5)

+I k )'_ - T
= - (Mn n _kg n kg c C kg

Fluid Sloshing Equations

The sloshing equations are obtained by the same method as the

bending equations. This method yields for, the k th sloshing mode,

1-6



2
_k + Z_SkC0Sk_k + (c0Sk) _k + (ax + gcos 0) w +XkW + ;$ - az

V@- xk ¢ + E (ax + g cos O) k. qi - _ixk'qi : 0i IXk

{1-6)

The spatial equations may be solved to determine the positions and

slopes necessary to solve (I-5) and (I-6); or, more likely, they may be

found expe rimentally.

Figure i-i plus the quantities entering into (i-5) and (i-6) lead to

the following geometrical equations:

Center Line Deflection

The deflection of the vehicle center line (displacement of c.g.) due

to nozzle deflection and sloshing fluid is given by

Mv = M _ 13- Em. ( 1 _7)

n n j J -O

Center Line Rotation

The rotation of the vehicle center line due to nozzle deflection

and sloshing fluid is

Iw = - (In +M _ _ ) _ - E m x. _j +Z E k. F. qj
n n g j J ] i j jx.l 1

(i-8)

Engine Gimbal Point Deflection

The deflection of the engine gimbal point from the undeflected

center line of vehicle is given by

Ug = v - f g w + E. ¢ig qi
1

Engine Gimbal Point Slope

The slope at the engine gimbal point is

(i-9)

qag w - E. k ig qi
1

(I-10)

i-7



There is one final dynamic equation:

Engine Dynamic s

The engine dynamics are found by summing the moments about

the engine gimbal point. This yields

I _ +B _ + + Ka) _ -M _ a + +Mn_ _ )¢{n n (Kn n n z (In m g

+ g cos 8) v - I _]g - M+ M _ g cos 80 + M(a x n nn n
+ cos (9) _gn(ax g

- M _ {1 - E (a + g cos 0) m. [.. : K _ (i-ii)

i_ _i g j x ] -j a ' a

After elimination of the intermediate variables of v, w, Ug,

and _ by direct substitution, Equations i-i through l-ll reduce to
g

Equations I-IZ through 1-16 (the coefficients "/ are listed in Table I-Z).

Normal Force Equation

+ _l_ - + + vz_+ _(Y_qi)+ _I_{%) : _ + _w
i j

(l-iZ)

Moment Equation:

i j

(I-13)

Nozzle Dynamics Equation:

i i j

J
= _{19 _ a

(i-14)

I-8



Bending Deflection Equation (kth mode):

_z°+ + z(Y[li{i)+ {k +_zz_k +z (_i73qi)+i " Yz4 qk

½ _j_ •
J J

Sloshing (kth mode):

(i-15)

• i .- i J3
]"79- _+_48 _ + _ + ri (Y30 qi ) + Ei (_31 qi ) + _'j (_ Z [j)

+_ I_{3%1+ [k+ _k+ _ : _ _ +'

(i-i6)

Sensor Equations

In addition to the equations of motion, it is necessary to introduce

equations that describe the output of any sensors used. Sensors

mounted on the vehicle sense the rigid body motion, the motion of

the vehicle arising from the bending modes, the sloshing modes and the

engine dynamics. The following three equations show the total inputs

to the various sensors. It should be noted that these equations apply

only to "perfect" sensors. No sensor dynamics have been included.

The addition of sensor dynamics requires the cascading of the sensor

dynamics with the output of the 'Iperfect" sensor defined by Equations

1-17, 1-18, and 1-19.

-Angular Displacement

The angular displacement sensed by an instrument located at sta-

tion P along the missile's longitudinal axis is given by

i {_sensor = _ + 2(Y39qi) + >2,(y O_j) + _41_ (I-17)
i j

I-9



Rate

The input to an angular rate sensing instrument located at station

P along the missile's longitudinal axis is given by

i o1 L

_sensor = + z  %9qi + + y4,P
i 3

(1-18)

Normal Acceleration

The input to an accelerometer which senses acceleration normal

to the longitudinal axis of missile located at station A is given by

nA = _4Z_ + "{43 _ - _43 _ + _/44_ +

J

i
Z (Y45 _ii)
i

(1-19)

The equations governing the sensor dynamics depend upon the

mechanization of the sensor; the following are typical sensor dynamics:

Angular Displacement

If it is assumed that the angular orientation is measured by a

position gyro, the sensor dyna:nics can be taken as a pure gain. The

attitude reference is a "free" gyro (really a three-axes gimballed gyro),

and the orientation of the body relative to the gyro is read out by means

of synchro pickoffs. Any dynamics associated with the motion of the

gyro would arise as a result of manufacturing inperfections, e.g.,

bearing torques and mass unbalance. The synchro is essentially a vari-

able transformer; the dynamics associated with the synchro signal arise

in the signal processing circuitry and are quite high in frequency.

Synchro pickoffs, or analogous linear devices can be used to measure

engine gimbal angles.

I-I0



T +T-D+N

c o g cos O
:/1 MV V

:/2 = g cos @V

T k +E k

MV ig k ix k

T - D + Na_IMV m.x.J J

T
c

:/5 = MV T- D +N _+ I_V_ "/ (In + f fn g Mn)

N f
. ol p

:/6 I

i T kig ) _:/7 = + -i-- (_big + f g
(No_ f + Tfg)P

Z
(I)

• T +T -D

y_ = _ c m. +
MI 3

(N ° fp + Tfg)

(I)z

m. x.

] J

T (T + T - D)
c c

:/9 - I fg - MI
M

n n

(N ° f + T
p c fg)(i n + f f Mn )
(I)Z n g

Table 1-2. Coefficient definitions.
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_I0
(In + _n _ Mn)

M
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-N
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i = n n g n

"i12 IMn _n (Ek Fkkix k) - _ig

I k.
n i$+

M
n n

c
v._ = /E F, k. \ +

(T c D)
k.

% ir

±v± ig

• (i+.,,)Jl ---- n n_ 4 + M + IM
11 11

m. x.

3 3

7J15 - (T c N)
MI m.j x.j

"Y16 ,In I - (In + _ f Mn)ZJ
= n g

IM
n n

M
n n

M

B
n

YI7 M
n n

YI8 (T - D= IF[ ) +

K +K
n &

M
n n

(T c - No_)

M (In + _ _ M n)n g

K
a

YI9 M
n n

_ l

Y20 M[_ (F_ kkx_)]

Table I-2. Coefficient definitions. (continued)
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1

I_ (F, k kx,) l

)]+ _ (F_ kix_ kkx_

"f22 = 2 _Bk°_Bk

i _ T%kg k + . (F£kY23 M ig M!

"_24 = (_°Bk)2

mx[i____ - m.

MI _ F_ kkx _ - --_J _kx.
J

• (T + T - D) m. T_kg
_J26 = c J .kM M kx. MI

J

m. x.

J J

I M

= n k n n qbkgY27 --_ kg M

( ÷
M n _ )

-In n g

MI

T ( c+T M,
_ c _kg + n n"{28 M M M

k
kg In+M _ _ 1 T

n n g _kg
+ I M

x k

_29 - V

i 1 k

Y30 - V Xk IV F_ ix_

Table i-2. Coefficient definitions. (continued)
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Y42

Y43

`144

= fA

= V

T +T-D ]
c

- g cos @M

`145 I f

m.

`1 6 = --'T -m'x" 3 3

- qbiA

f M f + f f Mn)_ n n A (In n g
"t47 M - I

a
_ x

`148 V

Table 1-2. Coefficient definitions. (continued)

Angular Rate

Vehicle angular rates are usually measured by single-axis spring-

restrained gyroscopes (rate gyros) which exhibit damped oscillatory

behavior (second order). Accelerations about the axis perpendicular to

the spin axis and the sensitive axis appear as rate errors, as do cross-

coupling effects at large rates. The engine gimbal rates can be meas-

ured with a tachometer with negligible dynamics.

Normal Acceleration

Normal acceleration is also usually sensed by devices exhibiting

second order behavior, e.g., damped spring-mass linear accelerometers

and integrating-gyro accelerometers.

1-14



Actuator Dynamics

If the signal from the controller is used to displace the control

valve of a hydraulic actuator, the transfer function between the control

signal and the actuator displacement may be taken to be of the form

K
s

I_Z Z_s l)
s+l) + _ s+

(Ts oos

" S

(1-ZO)

Model Dynamics

Before the model is completely specified, the number of bending

modes and sloshing modes to be included must be determined. Since

the natural frequencies of the dynamics increase as the mode number

increases, the number of modes is usually determined by neglecting

those modes corresponding to natural frequencies "sufficiently high" in

comparison with the control system response characteristics. For the

nonrigid aeroballistic booster studied herein, four bending modes and

three sloshing modes were retained, resulting in a Z6-pole transfer

function (or Z6 state variables). Adescriptive block diagram of this

model is shown in Figure 1-2. The summation points should be inter-

preted as indicating that the given input affects the block in question,

but not necessarily in the strictly additive manner shown.

1-15



ACTUATOR r

DESIRED CONTROL ICOMMAN_I

STATE COMPUTER --[

MEASURED

STATE

ACTUATOR

3 POLES

ENGINE

2 POLES

SLOSHING 1 _i
6 POLES

1

BENDING
8 POLES

RIGID VEHICLE

3 POLES
ii

SENSORS _il
4 POLES

,,41..(_1
r

4.

F_gure 1-Z. Block diagram of 26-pole model.
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2. MINIMAX PERFORMANCE CRITERIA

In the original proposal to MSFC, Hughes Aircraft Company

defined a class of performance criteria which were to be investigated

to determine their usefulness for generating control laws. These

criteria are designated "minimax" and pertain to the keeping of speci-

fied combinations of states of the given system as small as possible

when the system is acted upon by the "worst" of a class of external

disturbances. This class of performance criteria can be better

described in a mathematical form.

Let the system under consideration be governed by

x = Ax + a_ + by

where

A is an nXn plant matrix

a is an n-vector, coupling the control into the system

b is an n-vector, coupling the disturbance into the system

qb is the scalar control to be chosen

_/ is the disturbance.

Let Y=Y(t) be a member of the set of allowable disturbances F, denoted

by ¥_F ; similarly let q_ q_(x)_ , the allowable set of controls. Then

one form of minimax criterion is given by the following

rainmaxIIxII'

where a variety of norms may be used for • .

x _ max x(t)
t_[o,T] Q

One convenient norm is

where

with

Q = Q;:-"--nXn

A x(t)" Qx(t)x(t) II Q =

positive semi-definite matrix.

2-i



Using these definitions and the fact that

max If(t) = lira f(t) n dt

t_ [o,T] n ---co

i/n

P

we can write this minimax criterion as

rain max lira ILT [x (t)" Qx (t) ]n dt / 1

/1"1

.......... vcro_v_ _,_ i%%iiiii-cJ&._ c±-[te±iun results when one interchanges

max and rain . Doing this we may write

max min lira ix(t)" Qx(t) dt

ycr _ n-_ co/

This form is mathematically more tractable than the previous one and is

the one which Hughes Aircraft Company studied extensively during the

past year. It should be emphasized that, in general, one does not get

the same value for the performances indices in the two cases. The exact

conditions under which such an operation yields the same numerical

results before and after the exchange is not known. This is a current

area of research both at Hughes Aircraft Company and many other insti-

tutions. In what follows we shall only concern ourselves with perform-

ance criterion

max rain lim [x(t).Qx(t)] n dt

yEl-" _ n ---c0 o

Specifically first consider

ISoT 1rain lim [x(t)" Qx(t)] n at

_c_ n --- co

1/n

This in itself is a difficult mathematical problem and must be further

simplified before a meaningful solution can be presented. With this in

2-2



mind we propose studying the minimization of

T ,.11,.[x(t)- Qx(t) dt

for some large fixed integer n, instead of minimizing

In]lira [_: (t)" Qx (t) dt
n ..-... co

1/n

Again rigorous justification of the closeness of these two problems

is difficult, but the results of simulations have shown the simplification

to be valid. The actual problem considered is

rain [x(t)" Qx(t)] n dt

_c,I,

The first approximation to be considered is the case when n= 1.

This Js described in Section 3 and the necessary background is given in

Appendix C. For the case n= 1 an exact solution may be found, but in

the case n>l only an approximate solution is easily obtained.

In Section 4 minimization of performance criteria of the form

o

where _2w(x) is a positive semi-definite nqultinomial form, is described.

It should be noted that the performance criteria

f T[x (t). Qx(t)]n

O

dt

can be put in this form by letting _2n(x) = (x. Qx) n and qJ2w(x) = 0

when w _ n.
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Thus the problems considered there are of a more general nature
than minimization of

_[x(t)-Qx(t)] n
o

dt
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LINEAR DESIGN PROCEDURE FOR MINIMAX PROBLEM

Using the standard techniques of control system analysis and

design such as root locus, Bode analysis, etc. , for high order systems

usually results in a great deal of successive approximation and often

depends heavily on the ingenuity of the particular investigator carrying

out the analysis. Indeed, the concept of optimum design is not even

considered in general, for the very nature of the methods used necessi-

tates individual attention for each problem. These difficulties, coupled

with the fact that the"classical" methods have no natural extension to

systems with time-varying parameters and nonlinearities, have led

modern contributors in control theory to consider the problem from a

fresh viewpoint--that of state space analysis. The advantages of this

approach are manifold. Involved and often very specialized computa-

tions are reduced to common matrix manipulations quite amenable to

present day high speed computing devices. The idea of optimal design

can be stated in a very simple manner which is applicable to a myriad

of problems. Physical variables are not lost in a jungle of mathematical

manipulation, but rather maintain their identity throughout the analysis

of a problem, thus permitting new insight into the role of these variables

in the overall design. Perhaps the most important single advantage of

state analysis is that there is no conceptual difference in the presentation

of linear, linear time-varying, or nonlinear problems. All this has

inspired a vast amount of research which, in turn, has resulted in a

flood of publications in the area. In their zeal to contribute, many writers

have overlooked completeness in favor of broadness, and even though

many complex problems have been considered, efficient engineering

solutions to many important control problems are lacking. Although the

work of R. E. Kalman is nearly definitive from a mathematical view-

point, it neglects the design problem from the point of view of the prac-

ticing control engineer. Because of his determination to solve the auton-

omous and nonautonomous optimal control problems simultaneously,

Kalman failed to attain ultimate simplicity in the solution of the former

problem. Thus his theory for constant coefficient systems depends on

the steady-state solution of a matrix differential equation, a numerically
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cumbersome proposition. Work at Hughes, on the other hand, as pre-

sented in the paper, r'High Order System Design Via State Space Consid-

erations, "* has permitted the design of optimal single channel controls

by purely algebraic means, thus reducing computer time and allowing

for extension to high order systems. The following discussion is based

primarily on that paper.

In general, a linear system with single channel control can be

represented by the set of differential equations

:k = Ax + a_ (3-1)

where x is the ,_ta_ v_otor, A is the nnatrix of the plant paran_ctcrs,

a is an actuator vector, and _ is a scalar control function, assumed here

to be a linear combination of the states at any instant of time. The object

of the design procedure under consideration is to find this linear feedback

relationship so as to optimize the performance of the resulting "closed

loop" system. In particular, the elements of a vector g are sought such

that _ -- g .x minimizes an integral of the form
00

= ½f (x.Cx +*2)dt (g-z)
o

where C is a symmetric non-negative definite matrix. The choice of

the matrix C is equivalent to specifying the nature of the optimality to

be considered. Indeed, it directly determines the performance of the

resulting system. This matrix can be appropriately chosen only in the

context of a particular problem. For aerospace vehicle stabilization,

quantities such as structural load, pitch error, etc. , must be kept below

certain bounds while the maximum of some critical quantity such as

lateral drift is minimized. Indeed, load, pitch error, and drift can be

expressed as a linear combination of state variables of the form

Iqi. i: (3-31

By noting that in the integral

00 i

/o [(q " x)/_°IZ dt (3-4)

the total contribution of time at which lai.xl holds is "penalized"
o

holdsdisproportionately compared to the times at which lqi.x I < N°

*Presented at 1965 JACC.
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the matrix C can be specified. In particular, the abovementioned

objectives are satisfied to a first approximation if

C = _lql(ql)_':-"+ )_:-_ rye, r_,wgqZ(qZ +''" + Kry_q _q _ (3-5)

In the analysis of systems by state space approaches, the concepts

of controllability and observability lie at the very foundation of system

theory. Mathematically, if controllability is ensured, there always

exists some control to bring the system from one arbitrary point in

state space to any other. If an output is observable, that output cannot

vanish identically for a finite period of time unless the system is totally

at rest. (See Appendix F for mathematical criterion for linear systems. )

Heuristically, the lack of controllability implies an "open circuit" some-

where in the system input (i.e. , one or more modes of the system can-

not be reached). Analogously, if an output is not observable, then an

"open circuit" exists in that output path. These ideas do not appear in

the classical transfer function methods, for the transfer function itself

is only a valid representation of the observable and controllable part of

a linear dynamic system. Appropriate tests for these criteria can be

made only when the system is represented in the "natural" form of

simultaneous differential equations in many variable s.

The theoretical development of the actual design method in ques-

tion is fairly involved and so only an outline of the ideas will be dis-

cussed here. Basically, Pontriagin's Maximum Principle is applied to

the system (3-I)to give the necessary conditions for minimizing the

integral (3-2). Combining the resulting equations with stability require-

ments as formulated by Liapunov's Second Method results in a unique

feedback law which can always be found by purely algebraic operations.

In particular, the design method suggested is based on finding the re-

solventf of the matrix A (evaluating the matrix of polynomials in s given

by IsI - A_-I). This canbe accomplished directly by Leverrier's

algorithm or indirectly by standard matrix manipulations. In finding the

resolvent, the characteristic equation for the system is also explicitly

displayed. From these quantities, and the chosen performance matrix

C, the characteristic equation for the optimal closed loop system can

be directly determined. Then, with the aid of a specially derived
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relationship between the open and closed looped systems the vector g

can be found. It is to be noted that thus far system controllability has

been assumed. The "amount" of controllability as given by a specific

algebraic criterion determines the magnitude of the vector g and hence

the feasibility of practical implementation of linear control.

In addition to being optimal in the sense discussed previously,

systems designed by these methods are remarkably adaptive to large

variations or to saturations in both feedback signals and actuator

characteristics. It is shown in Appendix C that once a system is de-

_g_ _ _7_ a quadratic ---_ ........ " ii_ _,__,_,_ _u_, a Liapunov function

can be found which will guarantee the stability of the system to certain

initial perturbations for considerable variations in the feedback signal.

Furthermore, under these conditions the modified performance index

CO

will not be increased beyond the nominal minimum value found for the

system if no perturbations were present. Adaptivity to feedback satu-

ration is particularly important when the elements of the control vector

g are relatively large.

In awide class of problems, saturation may not be permissible

or it may be very desirable to keep the magnitude of the control vector

small. This can be readily accomplished by taking the matrix C in (3-2)

to be identically zero. Minimizing the resulting performance criterion

will then be equivalent to minimizing the _'amount _ of feedback in a

least-squares sense. With a stable plant this so called 'rminimum

effort" control reduces trivially to no control at all. However, with an

unstable plant such a criterion generates a closed loop system whose

poles consist of the stable plant poles and the reflections in the imag-

inaryaxis of the unstable ones. In this case then, the optimal control

law can be tested easily and compared with other criteria.

In the design of large aeroballistic launch vehicles there are

situations in which linear feedback can yield an exact answer to the

minimax control problem. This occurs when an arbitrary linear

combination of state variables can be forced to decay directly from an
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initial perturbation. The necessary and sufficient conditions for the

existence of suchan"ultraminimax" control are shown in Appendix G

along with an explicit formula for that control when it exists. It is

also shown there that ultraminimax control is a limiting case minimizing

a criterion of the form (3-2) when the terms in the state variables are

increasingly weighted in comparison to the control term.

It is to be emphasized that designs discussed up to this point are

really incomplete, for they assume measurement and feedback of all

state variables -- a highly unlikely situation in common problems. To

supplement these methods, a filter has been designed which can approxi-

mately generate g-x given only incomplete state information. That is,

the output of linear sensors measuring independent observable variables

can be used to generate the optimal feedback control. The filter con-

figuration in general consists of parallel networks, each operating on

a specific sensor output. These networks have common poles which are

completely arbitrary. The number of poles needed in the filter is usually

equal to, or slightly greater than, the quantity n/m - l, but less than

the quantity n - m when n is the order of the given system and m is

the number of independent sensor outputs. It is found that the optimal

system poles as determined above are mechanized in the closed loop

system when the filter is introduced. Furthermore, as the real parts

of the chosen filter poles become more and more negative, the corre-

sponding poles of the overall closed loop system approach more and

more closely the chosen poles themselves. It is noted that this method

of filter design may be limited because of increased sensitivity to sensor

noise and system parameter variations when fast poles are introduced.

The important problem of supplementing this design with a method for

optimizing filter pole locations in accordance with a minimal variance

scheme has not yet been considered and is an open research problem.

One possibility would be to estimate all state variables via a Kalman

filter and then reconstruct g.x . This, however, always introduces

n new poles to the system. For high order systems, a Kalman filter

can be quite cumbersome and expensive. As an approximation, perhaps

the dominant poles of the Kalman filter can be used in optimizing the

poles of the parallel filter described above. Additional research is

needed to determine the feasibility of this proposition.
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4. DESIGN PROCEDURE FOR NONLINEAR APPROXIMATION
OF MINIMAX PROBLEM

The problem of minimizing a quadratic performance criterion

for a linear time-invariant plant subject to a mean square constraint
on the cost of control leads to a linear control law. As a natural

generalization of this problem, the problem of minimizing a quartic or

higher order performance criterion subject to a mean-square constraint
on the control may be considered. The theoretical details of the solu-

tion to this problem are presented in Appendix E. In it, the known fact

that it is necessary to introduce quadratic terms in the performance

criterion to ensure stability of the overall system is reviewed. Then

the quartic and higher-order terms are introduced in order to impose
bounds on specified state variables. In other words, the linear control

derived from the quadratic terms stabilizes, and the cubic or higher-

order control derived from the quartic or higher-order terms limits,

the transient response to the desired region. This is exactly what might

be suspected, since the stability of a nonlinear autonomous system in
a neighborhood of the origin is determined by the linear terms. The

nonlinear control law is derived by finding the unique solution to the

Hamilton-Jacobi partial-differential equation for the problem posed.

As shown in Section Z, performance indices of the form

7
1 _2 + 1 qj2 /(x) + J

dt (4-1)

th
where _2w(x) is a 2w order positive semidefinite form, 9 is the control

to be chosen, and @n_ is the nonlinear portion of the control, arise

quite naturally as approximations to a minimax performance index.

This performance index may be interpreted in an alternate

manner; namely, minimize

(4-Z)
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subject to

T

f @2 dt < 91
o

(4-2b)

and

o T 2Sn _ dt < PZ (4-Zb)

]By the use of Lagrange multipliers, one can change (4-2) to (4-i). This

is explained in detail in Appendix E.

During the past year, Hughes has studied (4-1) in detail to

dtermine an optimal control law which will lead to a minimax type of

response for the closed loop system. A concise statement of the prob-

lem, as well as the synthesis procedure used, follows below. Minimize

the performance index

V=l

where

and

subject to

Szv(x)>_O, x # 0

Sz_(_x) = _z_ Sz_(x)

th

The @fv(x) are the given 2v

The control law

where

:_ = Ax + aS

order forms and S is to be found.

S(x) = -a.grad(x ) V(x)

v(x)--a_ /z_L-) _z,_ (x),
v=l

(4-3a)

(4-3b)

(4-3c)

(4-3d)

(4-4a)

(4-4b)

is the optimal control law for (4-3).
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0,

The expressions _2v(X) must be related to the given expressions

_2v(X) in order to complete the solution. This relationship is separated

into two parts characterized by v = 1 and v > i.

v = 1 and introducing the notation

_2 (x) =_ x. Cx

and

_2(x) _ x. Bx

it is necessary that B

For the case v > i,

where

satisfy the equation

A B + BA - Baa B = -C

Considering the case

(4-5a)

(4-5b)

(4-6)

it is necessary that the _2v(x) satisfy the equations

Ax. grad(x ) _2v(X) = -_b2v(X ) (4-7a)

A
v.

A = A- aa" B

Here A corresponds to the stabilized linear portion of the system.

(4-7b)

With the

above relationships, the following holds for the optimal closed loop system.

fT i i 42 1 _j2g at (x°) (4-8)_v _2v + 2 + 2 = _2v
o =i v=l

Note that there is equality in equation 4-8 and the right hand side is

identical to the Liapunov function V(xO) chosen for the closed loop

system. Thus V(x °) is the unique solution to the Hamilton-Jacobi

equation for the problem stated. Optimal control laws found by this

procedure may actually saturate when mechanized. The resulting

system may become unstable for a large initial condition because of the

"limited amount" of control available. Estimates for the allowable

range of initial conditions in such a situation are derived for the linear

case in Appendix C and for the nonlinear case in Appendix E.

These estimates determine the domain of asymptotic stability of

the resulting system. However, when disturbances are coupled into

the system, one is faced with a problem of determining the region which
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bounds the system motion when acted upon by persistent disturbances.

Thus it is necessary to find a suitable Liapunov type function for the

nonautonomous disturbed system. (This is called "practical stability"

by Lasalle and Zefschetz. ) Some results have been obtained in this

area so far and there is considerable evidence that further results are

po ssible.

It should be mentioned that this problem of determining the

"operating" region of a disturbed system results from the fact that the

optimal control law was found for an undisturbed syste_r: with an initial

condition. However, results of Potter and Tung seem to indicate that

a system designed on this basis will be the best system when the actual

disturbance is white noise.

To gain some insight into the problem of determining the domain

of stability of the disturbed system consider Figure 4-i.

x02

a

 iIR°
b

Figure 4- I.

Figure 4-1a depicts the motions of the undisturbed system for two

initial conditions x01, and x02. When the system motion starts in the

region IR 0, as is the case for the initial condition x01, it eventually

returns to the origin. Thus IR 0 represents the domain of asyn_ptotic

stability. It should be remarked that IR 0 is bounded when the control

is bounded. Theorem 2 of Appendix E characterizes the region IR 0.

Figure 4-]b represents the type of motion that would be

expected for a disturbed system when the magnitude of the disturbance

is bounded. -Any initial condition x01(IR0-IR 1 leads to a motion which
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eventually enters IR 1 and remains there. Any initial condition x02
outside of R0 leads to motion which is unstable because of the assumed

boundedness of the available control. Determining the regions IR 1 and
IR 0 of Figure 4-1b would allow the designer to assess accurate bounds

on motion of the controlled system. This is an area of study which can

yield valuable results for designing minimax control systems.
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5. COMPUTER PROGRAM FOR LINEAR DESIGN PROCEDURE

BACKGROUND

In this section, the paper entitled "High Order System Design

via State-Space Considerations" is mechanized by two basic digital

computer programs, including several special subroutines. Included

are the listings of the routines, associated diagrams,and a complete

dictionary of symbols. The actual IBM 7094 printout of a case using

a fifth order Saturn model is given.

The digital programs are referred to by their Fortran language

names, CNTRL2 and FILTER. Following is a brief description of their

functions: Given the system matrixA, the actuator vector, a, and de-

sired performance index matrix, C, CNTRL2 computes the optimal

closed loop poles, then computes the corresponding control vector, g.

FILTER, using data from CNTRL2, computes the parameters of a

simple multiport filter to approximate the desired result. Another pro-

gram, CNTRLI, was written which would compute the control vector to

achieve arbitrarily specified closed loop poles. This program has been

dropped, since the same result could easily be gained by reading in the

arbitrary poles as data and bypassing the optimal pole computing por-

tion of CNTRLZ.

Several subroutines were written to be called by one or both of

the main programs. ALPHAS uses double precision arithmetic in the

Zeverrier algorithm to compute the coefficients of the characteristic

equation of the system matrix. It is used twice in CNTRL2, first to

compute the open loop coefficients, then to compute the closed loop

coefficients as a check on the main program. POLYWG determines the

optimal closed loop poles to be obtained by CNTRLZ. SYNTHI performs

most of the vector and matrix manipulations of CNTRLZ to arrive at the

control vector, g. OBSMAT computes the observability matrix and fil-

ter arrangement matrix for FILTER. Three minor subroutines were

written and used by several other routines. MATMPY multiplies

matrices, DMATMP does the same in double precision. ORDINV re-

verses the order of a one-dimensional array, useful since the library
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subroutines use data which is in reverse order to that required for

clarity in these programs.

The programs are completely self-checking, with the exception

of POLYWG. To check the validity of POLYWG, an arbitrary example

was computed by the use of the Leverrier algorithm, which is itself

self-checking. ]Enough confidence in POLYWG has been developed so

that the possible incorporation of the Leverrier algorithm as a check

on POLYWG (mentioned in an earlier report) has not been carried out.

Four library subroutines available at Hughes were incorporated

into the routines. Their functions are described briefly in this section.

No details seem necessary, because anyone outside of Hughes Aircraft

wishing to make use of the Linear Design Procedure would have to sub-

stitute other subroutines which are at his disposal.

An effort was made to make the programs as self-explanatory as

possible, with the aid of many comments in the listings, accompanying

block diagrams, a complete dictionary, and annotated comments on the

printed output. Hence the explanations in the next section are not all

complete in themselves, but serve merely to clarify a few details.

PROGRAM DETAILS

CNTRL2

By having two performance matrices available, it is possible to

vary the emphasis on different requirements by varying two weighting

factors. In this case, the first performance matrix, CI, was computed

to minimize drift, and the second, CZ, was computed to minimize load.

A value of either l or 2 for MPRNTS must be read in as data,

according to whether or not it is desired to write the S-matrices during

the program. They should be written if the system transfer functions

are desired. If MPRNTS = 2, ENORM, the sum of the absolute values

of the S elements, is written instead. This is a sufficient indication of
o

roundoff error and takes much less space.

Although the calling statement for ALPHAS contains ELINV in the

argument both times, there is no meaning in the second call. ELINV

is used only because it is no longer used by the program, hence is a

convenient matrix to fill a space.
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The coefficients of the optimal closed loop characteristic equa-
tion (ALFOPT), as determined by POLYWG, are in inverse order--

the standard order of the coefficients being assumed the order of powers

of s to which they correspond. The order is reversed and the new array
is called OPTALF.

FILT ER

The input of the sensor matrix is arranged so that various num-

bers of sensors can be tried without rewriting the program. Each card

of a set of five represents a sensor. A blank or zero card indicates no

sensor. The order of the sensors is not important, since the program

eliminates the zero rows and labels the remaining ones as Sensor No. l,

Sensor No. 2, etc. The filter numerators are correspondingly numbered.

The program specifies that N values (complex) be read in for

POLES (I). These are the arbitrarily chosen filter poles. They should

be in order of their desirability, since the program, after determining

how many filter poles are required, takes as many as it needs, begin-

ning from the top of the list. Actually no more than n - 1 could be used

under any circumstance, so that the n th space could be left blank.

The matrix VK is substituted for OBSERV in order to save OBSERV,

since the library subroutine MATS destroys input information.

The GAMMA matrix is obtained by separating the parts of the n-

vector d and placing them in adjoining columns as shown in the defini-

tions following Equation (31). This is done with the aid of the IJDLTL

(filter arrangement) matrix which is described further under OBSMAT.

There may seem to be some confusion concerning the H and HSTAR

matrices. Note that they share storage locations by means of the

EQUIVALENCE statement. Originally read in as HSTAR in order to

represent each sensor by a single data card, the rows and columns are

then interchanged to be used in computations. When HSTAR is written

after the transposition, it is done by writing H but reversing the indices

in the WRITE statement.

*All equation numbers in this section are those of the equations in

Appendix C, "High Order Design via State-Space Considerations."
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Subroutine ALPHAS

ALPHAS mechanizes the recursive relationship expressed by

Equations (7a) and (7b).

The single-precision inputs are replaced by double-precision

variables. The computations are performed in double precision and the

results are replaced by single precision variables for writing or storage.

The double-precision dummies are dimensioned internal to the subroutine.

INDEX(NN) is carried along only as a convenience in printout of

the ALPHA's and S-matrices. It allows the index to vary from 0 to N,

not allowed directly. This feature is probably more confusing than

necessary.

Subroutine POLYWG

7 2n
The coefficient of each even power of s from s through s of

the polynomial A2n(S ) is computed in turn. Coefficients of the odd terms

are zero. Beginning with the working dummy COEFF(I) set equal to

zero, the subroutine adds on the various parts as expressed in Equation

(57). The index is then increased and COEFF(I÷ i) is computed, etc.

Special cases (s O and s 2n) are computed separately afterward.

Signs of the various terms are determined by the variables SIGNI

or SIGNJ which are, at the proper times, either ÷i or -i .
th 2.

The intermediate result is an n order polynomial in s The

n roots of that polynomial are determined by a root-finding routine. The
2

complex square root of each root in s is taken, giving the 2n roots,

half of which are in the left half plane. The complex square root function,

CSQRT, provides only one of each complex pair. POLYWG accepts

those which are in the left half plane, and changes the sign on those which

are not. The resulting roots are the desired optimal roots.

An effort has been made to make the Fortran symbols correspond

very closely with the Equations (44) and (57).

Subroutine S YIXITH 1

Equations (14), (15b) and (20) are mechanized by this subroutine.

SYNTHI first computes the transpose of the controllability matrix, DSTAR.
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If it is singular, the control vector cannot be computed so the subroutine

writes "System not controllable "''" Otherwise GLTL is computed

and the subroutine makes a normal return to the main program, CNTRL2.

Note that the equivalence statement is merely a comment, indi-

cating that the actual equivalence statement must appear in the main

program. AAT and BLTL, EN and AB are equivalenced as required
by library subroutines.

In order to preserve DSTAR for writing in the main program,
another matrix, AAT, is substituted to make use of the simultaneous

equation subroutine SIMEQ.

Subroutine OBSMAT

This subroutine follows the procedure outlined on page 4 of the

reference to compute the observability matrix I4 (OBSEP_V). IJDLTL,

the filter arrangement matrix, is constructed during the testing of

columns for independence. Elements are made 1 if the column is inde-

pendent, or zero if it is not. After FILTER computes d, the successive

components will be placed columnwise in the elements of GAMMA if

the corresponding elements IJDLTL are i. Elements of GAMMA are

made zero if the corresponding element of IJDLTL is zero. The dimen-

sions of the GAMMA and IJDLTL matrices are identical.

For computational purposes, a slight refinement has been made

on the Gram-Schmidt orthogonalization procedure. Normally, each new

column to be adjoined is tested for independence by formation of the

orthogonal vector W(I). The column is independent if W(I) is not zero.

In OBSMAT a tolerance has been introduced. The magnitude of

W (WMAG) is required to be less than 10 -6 times the average magnitude

of previous columns (VMAVM6).

Library Subroutines

A brief functional description of library subroutines used in the

Automatic Design Procedure which are available on tape at Hughes

Aircraft Company follows.
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MATS. Solves simultaneous equations in the form

(A)(x) = (B)

(A) and (B) must first be adjoined into an n by n+l

The solution vector (X) is dimensioned separately.

(A') is destroyed during computation.

matrix (A'): (AIB).

The input matrix

SIMEQ. Similar to MATS except (A) is not adjoined to (B) prior to

use. Both (A) and (B) are destroyed during computation, with the solu-

j.. .... J_ _ __ i_r__u_1 ve_u_ _Aj ±_L11ah_i1_g as _he first column ox _). For this reason

(X) must appear equivalenced to (A).

ROOT1. A root-finding routine usually good to N= Z0. N+ i coeffi-

cients of a polynomial in s are input, in order of descending powers of

s. As an aid to the subroutine, an initial guess of the roots (APPROX)

is made. If the initial guess is zero, the subroutine makes its own

first guess.

POLCO. Given the roots of a polynomial, this subroutine gives the

coefficients of powers of s, in descending order.

NUMERICAL RESULTS

Although the example shown was chosen arbitrarily to demonstrate

the design procedure, it merits some explanation, especially with regard

to the filter.

While the design procedure guarantees physical realizability, it

does not ensure practicality, as shown by the example. There are two

reasons for this: (1) the large performance index weighting factor requires

very large feedback gains; (2) since _ is not measured in this example, it

must be derived synthetically. In contrast, the filter designed in the

Monthly Progress Report dated 15 March 1965 was much more realistic,

where _ was measured and the feedback gains were much less.
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MAIN PROGRAM

CNTR L Z

{ MPRNTS )

A(I, J)

READ ALTL (I, i)

Cl (I, J)

cz (i, J)

WRITE program title and input data)

Find coefficients of open loop characteristic equa-

tion via SUBR . ALPHAS. Compute roots. WRITE

ALPHA(I) and OLROOT(1). Also write ELINV for

later use in FILTER Program.

READ Performance Weighting Factors CAPPAI & )CAPPA2 "

I Compute optimal coefficients (OPTALF) of closed ]loop characteristic equation by POLYWG.

Compute control vector GLTL by SYNTHI. DSTAR,

the transpose of the controllability matrix, is

computed'in the process. WRITE DSTAR

IUse GLTL to form closed-loop system matrix ATILDE

Find coefficients of closed-loop characteristic equa-

tion (ALPHAZ) and compute resulting closed loop

roots (CLR OOT).

(WR,TE:ROOTSOLTLCLROOT)
I
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a

C OPTIMAL LITTLE-G MAIN PROGRAM (STH ORDER)

C REQUIRES SPECIAL SUBROUTINES ALPHAS,MATMPY,MATPWR,ORDINV,POLYWG,SYNTHI

C

DIMENSION AIS,5)_,AAT(5,6I,AB(5,1I_A G(5'5)'ALFOPT(12I_ALTL(5'I)'

2 ALTLTR(I,5),ATP(5,5),ATR(5_5),ATILDE(5,5),ALPHA2(6)'

3 ALPHA(6),A2(5,5),APPROX(1Q),
4 BLTL(5,1),C(5,5),CI(5,5),C2(5,5),CLROOT(5),COEFF(6)'

5 DSTAR(5,5),ELINV(5,5),EN(5,1),GLTL(5,1),S(5,5),

6 GLTLTR(I,5),INDEX(6),OLROOT(5),OPTALF(6),ROOTS(IO)

7 ,TEMP(5)

C

COMPLEX OLROOT,CLROOT,APPROX,ROOTS,ALFOPT
EQUIVALENCE (AAT,BLTL),(AB,EN),(ATP,TEMP)

N=5
NP=N+I

C

C COMMENT ON INPUT
C A- SYSTEM MATRIX
C ALTL- ACTUATOR VECTOR
C Cl AND C2 - PERFORMANCE MATRICES

C
READI],I)MPRNTS.
READ(I,2)(IA(I,J),J=I,N),I=I,N)

READ(1,2)(ALTL(I,1),I=I,N)

READ(I,2) I(CI(I,J),J=I,N),I=I,N), I(C2(I,J),J=I,NI,I=I,N)

1 FORmAT(tO(2)

2 FORMAT(SEIO.O)

C
C__#__________

C WRITE INPUT DATA

C
WRITE(2,3) ((A(I,J),J=I,N),I=I_N)

3 FORMAT(1HI,35X,28H CONTROL SYNTHESIS PROGRAM 2 //// 5X,9H A-MATRIX

2 // (IOX_5FI5._/) )

WRITE(2,_) (ALTL(I,1),I=I,N)
2 ,((CI(I,J),J=I,N),I=I,N), ((C2(I,J),J=I,N),I=I,N)

FORMAT(//SX,16H ACTUATOR VECTOR // 5(30X,FI0,I//)///

2 5X,21H PERFORMANCE MATRICES // 8X,14H DRIFT MINIMUM//

3 5(IOX,SEIS,A//} / 8X,I3H LOAD MINIMUM //5(IOX,5EI5,4//))

C

C OBTAIN COEFFICIENTS OF OPEN LOOP CHARACTERISTIC EQUATION (ALPHAS) BY

C CALLING SUBR. ALPHAS. IF MPRNTS IS I, THE S-MATRICES WILL BE

C WRITTEN BY THE SUBROUTINE.

C
IF(MPRNTS.EQ.1)WRITE(2,14)

14 FORMAT(1HI,2_H S-MATRICES OF OPEN LOOP ////)

C
701 CALL ALPHAS(N,A,ALTL,ALPHA,S,INDEX,MPRNTS,ELINV,ENORM)

C

IF(MPRNTS.EQ.2)WRITF(2,15) ENORM
15 FORMAT(IH1,30X,BH ENORM = EIS._,2?H (SUM OF ABSOLUTE VALUES OF

2 16H S-ZERO ELEMENTS ///)
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C

C FIND ROOTS OF CHARACTERISTIC EQUATION (OPEN LOOP}
C

DO 102 I=I,I0

102 APPROX(II:(O.tO.)
CALL ORDINV(NPgALPHA)

CALL ROOTI(N.ALPHA.OLROOT.APPROXgM)
CALL ORDINV(NPtALPHA)

C

C______#______

C WRITE RESULTS OF SUBR ALPHAS (ALPHA_OLROOT AND ELINV)
C

WRITE(2_5)N_(ALPHA(1)_I=I_NP)_(OLROOT(1)_I=I_N)

5 FORMAT(/5X,3kH OPEN LOOP CHARACTERISTIC EQUATION //

2 IOX,#5H COEFFICIENTS OF ASCENDING POWERS OF S ( 0 TO,12,2H )//

3 /lOX,6E18.5////5X,43H ROOTS OF OPEN LOOP CHARACTERISTIC EQUATION

# /// 30X_5H REAL_15X_10H IMAGINARY//(2OX,2E20.5//) )
C

C

C

WRITE(2_I6)M

16 FORNAT(3OX,12,20H SIGNIFICANT FIGURES ///)

WRITE(2_IO)

i0 FORMAT(IHI)

WRITE(2_6) ((ELINV(I,J),J=I,N),I=I,N)

6 FORMAT(31H ELINV (USED IN FILTER PROGRAM) ///5(10X,5E20.6//))
C

C READ PERFORMANCE WEIGHTING FUNCTIONS
C

931.READ(1_2) CAPPAI_CAPPA2

IF(CAPPAI.EQ.123_567.} GO TO 50
DO 933 I=I_N

DO 933 J=I,N
933 C(I_J)=CAPPAI_CI(I_J)+CAPPA2_C2(I_J)

WRITE(2_IO)
WRITE(2_905) CAPPAI_CAPPA2_ ((C(I_J)_J=I_N)_I=I_N)

905 FORMAT(SX_30H PERFORMANCE WEIGHTING FACTORS //

2 / 30X_30H DRIFT MINIMIZING (KAPPA-ROOF) E15,3 /
3 / 30X_30H LOAD MINIMIZING (KAPPA-TILDE) E15.3 /

///31H WEIGHTED PERFORMANCE INDEX - C // 5(IOX,5EI5._//) )
C

C COMPUTE COEFFICIENTS OF OPTIMAL CLOSED LOOP CHARACTERISTIC EQUATION
C (OPTALF). S-MATRICES WRITTEN IF MPRNTS IS 1.
C

CALL POLYWG(ALPHA,ELINV_C,COEFF_N_ROOTS,APPROX_ALFOPT)

DO 203 IJ:I,NP

I=N+2-1J

203 OPTALF(1)=REAL(ALFOPT(IJ))

DO 107 I=I,N

107 ALTLTR(1,I)=ALTL(I,1)
C

C FROM A*ALPHA_OPTALF AND THE TRANSPOSE OF ALTL_ SUBR SYNTH1 COMPUTES
C THE CONTROL VECTOR GLTL.
C
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C

C
C

CALL SYNTHIIN,A,ALPHA,OPTALF,ALTLTR,ATR,ATP,AAT,EN,BLTL'AB'GLTLt

2 TEMP,A2,DSTAR)
WRITE(2,10)

WRITE(2,7) ((DSTAR(I,J),J=I,N),I=I,N)

7 FORMAT(///23H CONTROLLABILITY MATRIX /// 5(10X,SE20.6//) )

C

C

DO 109 I=I,N

109 GLTLTR(I,I)=GLTL(I,I)

CALL MATMPY(ALTL,N,GLTLTR,N,I,AG)

DO 111 I=I,N

DO 111 J=I,N

111ATILDE(I,J)=A(I,J)+AG(I,J)

C

C US[ GLTL TO FORi_i CLObE_-LOOP 5YSThM MATRIX ATILDE. AGAIN USE SUBR
ALPHAS TO FIND ACTUAL CLOSED-LOOP ROOTS ACHIEVED BY CONTROL

VECTOR.

IF(MPRNTS.EQ.I)WRITE(2,23)

23 FOR_AT(IHI,26H S-MATRICES OF CLOSED LOOP ////)

CALL ALPHAS(N,ATILDE,ALTL,ALPHA2,S,INDEX,MPRNTS,ELINV'ENORM)

IF(_PRNTS.EQ.2)WRITE(2,15)ENOR_

WRITE(2,10)
WRITE(2,8) ((ATILDE(I,J},I=I,N),J=I,N)

8 FORMAT(/// _TH A-TILDE-TRANSPOSE (ATT USED IN FILTER PROGRAM) /

2 //5(IOX,SE20.6//) )

C

C
CALL ORDINV(NP,ALPHA2)

CALL ROOTI(N,ALPHA2,CLROOT,APPROX,M)

WRITE(2,10)
WRITE(2,13) (ROOTS(1),I=I,N), (GLTL(I,1),I=I,N),(CLROOT(1),I=I,N)

13 FORMAT( //SX,26H OPTIMAL CLOSED-LOOP ROOTS /// 30X,SH REAL,IOX,

i IOH IMAGINARY //5(20X,2E20.5//) //
2 . 5X,50H COMPUTED FEEDBACK CONTROL VECTOR (TERMS 1 THRU N} ///

3 5(35X,E15°5//)// 6X,_SH CLOSED LOOP ROOTS ACHIEVED BY CONTROL VEC

_TOR /// 5(20X,2E20.5//) )

C

C
GO TO 931

50 WRITE(2,51)

51FORMAT(IH1)

CALL DUMP

STOP

END
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MAIN PROGRAM

FILTER

N=5

NP = N+I

T

I ALP.A_
E LINV \

ATT ]

GLTL /

HSTAR __

+
WRITE Input. Before writing HSTAR', eliminate)zero rows.

+

OBSMAT.to 100.

Compute observability matrix OBSERV by SUBR.

If not observable, ICOLM is set equal

+

+
I False pole .IZ34567 ?

_NO
Take first IR poles on list and multiply to get

coefficients of filter denominator (BETA)

Is system observable? } NO

YES

11RPI = ICOLM 1 (IR = IRPI- 1

+
_EAD N values of POLES) I

£
Compute BAGSUM

Solve (OBSERV)x (DL) = (BAGSUM) for (DL)

+
into GAMMA-matrix

st of filter parameters

+

Convert DL-vector

WRITE GAMMA lias

Compute poles and Zeros of filter and WRITE

+
Compute poles of resulting closed-loop system and
WRITE.

I

WRITE: "SYSTEM )NOT OBSERVABLE"

+
CORE DUMP, END

CORE DUMP, END

)

I

I
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C FILTER (5TH ORDER SYSTEM)
C REQUIRES SUBROUTINES OBSMAT, MATMPY
C
************************************************************************

DIMENSION A2(5,5),A3(5,5),A4(5_5),ALFSYS(II),ALPH(I1),ALPHA(6)'

2 APPROX(5),ATGI(5,1),ATT(5,5),
9 BAGSUM(5),BETAI6),BETAI(6), DL(5), ELINVCS,5), GAMMA(5,5),
4 GAMMAI(5),GAMSA(11),GAMSAH(11),GLTL(5,1), H(5,5),HPLA(11),

A HSTARC5_5)_FILZRO(5) ,
5 IJDLTL(5,5)_NGLIST(5),NRROOTII0),OBSERVIS,5),POLE(5),POLES(5)'
6 SAH(5,5),SAHI(5),S(JM(5), U(5,5),VK(5,6),VNXM(5,5)gW(5)

C

COMPLEX APPROX,BETAI,FILZRO,NRROOT,POLE,POLES

EQUIVALENCE (H,HSTAR),IPOLES,FILZRO)

C

N=5

NH:N+I

C COMMENT ON INPUT -
C ALPHA- COEFFICIENTS OF OPEN-LOOP CHARACTERISTIC EQUATION

C ELINV- AN OUTPUT OF A PROGRAM WHICH COMPUTED THE CONTROL VECTOR

C ATT- TRANSPOSE OF THE A-TILDE MATRIX (FROM CNTRLI OR CNTRL2)

C GLTL- CONTROL VECTOR
C HSTAR- ROWS(CARDS) REPRESENT SENSORS, THERE MUST BE N CARDS,

C SOME BLANK IF LESS THAN N SENSORS.

C

READ(I,1) (ALPHA(I},I=I,NP)

READ(I,3) ((ELINV(I,J),J=I,N),I=I,N)

READ(I,3) ((ATTII,J},J=I,N),I=I,N)

READ(I,3) (GLTL(I,1),I=I,N)

READ(I,3) ((HSTAR(I,J),I:I,N),J:I,N)

i FORMAT(6EIO.O)

3 FORMAT(5EIO.O)

C

C WRITE INPUT

C
WRITE(2,6 ) ((ATT(I,J),J=I_N),I=I,N)

6 FORMAT(IHI,20X_37H DESIGN FILTER TO APPROXIMATE DESIRED

2 26H SYSTEM POLE CONFIGURATION //// 25H A-TILDE-TRANSPOSE MATRIX

///(IOX,5F18.6//) )

WRITE(2,?) (GLTL(I,1),I=I,N)

7 FORMAT(//26H G-LITTLE (CONTROL VECTOR) /// (30X,F20.6//) )

C

C DISCARD ZERO-ROWS OF HSTAR

JJ=O
DO _01 J:I,N

HSUM=O,
DO 102 I=I,N

102 HSUM=HSUM + H(I,J)
IF(HSUM,EQ,O,) GO TO _01
JJ=JJ+l

DO i03 I=I,N

103 H(I_JJ)=H(I,J)

_01 CONTINUE

M=JJ

C

WRITE(2,10)

10 FORMAT(IHI)
WRITE(2,8)

8 FORMAT(13H HSTAR MATRIX //)
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DO 51 I=I,M

STO SUBRLS+M,I

18 FORMAT(/1 X,7HSENSOR I1,5X,7(FI5.3) )

51 WRITE(2,18) I,(HSTAR(J,I),J=I,N)

WRITE(2,19) (ALPHA(1),I=I,NP)

19 FORMAT(////50H COEFFICIENTS OF OPEN LOOP CHARACTERISTIC EQUATION

2 26H (POWERS OF S FROM 0 TO N) ///20X,6EI?.5)
WRITE(2,9) ((ELINV(I,J),J=I,N),I=I,N)

9 FORMAT(1HI,13H ELINV MATRIX /// 5(20X,5EI8.7//) )
C

C COMPUTE OBSERVABILITY MATRIX (OBSERV). IF SYSTEM IS NOT OBSERVABLE,

C ICOLM IS MADE EQUAL TO 100. SUBR OBSMAT ALSO KEEPS TRACK OF

C GAMMA POSITIONS VIA THE M BY ICOLM MATRIX IJDLTLo
C

CALL OBSMAT(N,ATT,M,H,A2,A3,VNXM,SUM,U,W,NGLIST,IJDLTL,OBSERV,

2 ICOLM)

WRITE(2,11) ((OBSERV(I,J),J=I,N),I=I,N)

II FORMAT(IHI,21H OBSERVABILITY MATRIX /// (IOX,5E20.6) )

IF(ICOLMoEQ.IOO)GO TO 55

C

C ICOLM (IF NOT i00) DETERMINES NO. OF FILTER POLES REQUIRED
C

IRPI=ICOLM

IR=IRPI-1
C

4O2 CONTINUE

C

C READ N CHOICES OF DESIRED FILTER POLES. PROGRAM WILL USE AS MANY AS

C REQUIRED, STARTING FROM TOP OF LIST.
C

READ(I,1) (POLES(1),I=I,N)

POLERE=REAL(POLES(1))
C

C FALSE FILTER POLE MAY BE USED AS DATA TO CAUSE CORE DUMP.

IF(POLERE.EQ.1234567.) GO TO 450
C

C OBTAIN COEFFICIENTS OF FILTER DENOMINATOR (BETAS)
C

DO 105 I=I,IR

105 POLEII)=POLES(1)

CALL POLCO(IR,I.0,POLE,BETA1)

DO 107 IJ=I,IRPl

I=IRPI-IJ+I

107 BETAII)=REAL(BETAI(IJ))
C

C PUT OBSERV AND BAGSUM IN FORM SUITABLE FOR SIMULTANEOUS EQUATION SUB-

C ROUTINE (MATS). SOLVE (OBSERV)X(DL)=(BAGSUM) FOR DL.
C

DO 109 J=I,N

109 BAGSUM(J)=O.

DO II0 I=I,N

DO II0 J=I,N

Ii0 A4(I,J)=O.

DO Iii I=I,N

IIi A4(I,I)=I°

DO _05 I=I,IRDI

CALL MATMPY(A4,N,GLTL,I,N,ATGI)
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DO 112 J=I,N
112 BAGSUM(J ) =BAGSUM(J) +BETA(I)*ATGI(J,1)

CALL MATMPY(ATT,N,A4,N,N,A3)
DO 114 K=I,N

DO 114 J=I_N

114 A4(K,J)=A3(K,J)

405 CONTINUE

DO 113 I=I,N

DO 113 J=I,N

lib VK(I_J)= OBSERV(I,J)
DO 115 I=I,N

115 VK(I,N+])= BAGSUM(I)

CALL MATS(VK,DL,N,1)
C

C THE IJDLTL MATRIX IS USED TO CONVERT THE VECTOR DL INTO A MATRIX GAMMA

C

DO ll? J=!,!COLM

DO 117 I=I,M
117 GAMMA(I,J)=O.

JJ:l
DO 406 J=I,ICOLM
DO 406 I=l,M

II=IJDLTL(I,J)+I

GO TO (_06,119),II

119 GAMMA(I,J)=DL(JJ)

305 JJ=JJ+l

4O6 CONTINUE

C
C____________

C WRITE THE PARAMETERS OF THE MULTIPORT FILTER AS COEFFICIENTS OF S-

C

WRITEI2,12)M.IR

12 FORMAT(1H1,50X,18H FILTER PARAMETERS //51X,12,14H - PORT FILTER /

2 /// 55H POLYNOMIAL COEFFICIENTS IN ASCENDING POWERS OF S I0 TO,

3 12,2H ) / )
DO 407 I=l,M

WRITE(2,13) I,(GAMMA(I,J),J=I,ICOLM)

13 FORMAT(///5X_I4H NUMERATOR NOo,12 //5X,IOE12°4)

407 CONTINUE

54 WRITE(2,14) (BETA(1),I=I,IRPl)

14 FORMAT(///5X,19H COMMON DENOMINATOR//5X,IOE12.4)

WRITE(2,IC)

C

C COMPUTE POLES AND ZEROS OF THE FILTER AND WRITE.

WRITE(2*17)
17 FORMAT(50X,13H FILTER ROOTS // )

DO 412 JJJ=I,M

DO 141 I=I,N
141 APPROX(1)=(O.,O.)

JP=O

DO 41] IJ=I,ICOLM
I=ICOLM+I-IJ

GAMI=GAMMAIJJJ,I)

GAM2=ABS(GAM1)
IF(GAM2.LE..OOOO1.AND.JP.EC.O) GO TO 411
JP=JP+l
GAMMAI(JP)=GAM1

411 CONTINUE
NA=JP-1
IF(NA.LE°I)GO TO 412

CALL ROOTI(NA,GAMMAI,FILZRO,APPROX,MSIG)
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21FORMATIII/5X,14H NUMERATOR NO. I2/ (30X,2E20.6) )
WRITE(2,21) JJJ,(FILZROIJ),J=I,NA)

412 CONTINUE

22 FORMATIII//5X,19H COMMON DENOMINATOR / (30X,2E20.6) )
WRITE(2,22)IPOLE(1),I:I,IR)

C

C USING THE COMPUTED FILTER, DETERMINE THE POLES OF THE CLOSED LOOP.

NSAH=N-1
NGAM=ICOLM-1

NGSPI=NSAH+NGAM+I
CALL MATMPYIELINV,N,H,M,N,SAH)
DO 121 I=I,NGSPl

121 GAMSAH(1)=O.

DO 129 I:I,M

DO 123 K:I,ICOLM

123 GAMMAI(K)=GAMMA(I,K)

DO 125 J=I,N

125 SAHI(J)=SAH(J,I)

DO 127 II=I,NGSP1

GAMSA(II)=0.

II=II-NSAH

JGAMIN = MAX0(II.I)

12=NGAM+I

JGAMAX= MINO(12,11)

DO 127 JGAM=JGAMIN,JSAM_X
JSAH=II+I-JGAM

127 GAMSAIII)=GAMSA(II)+GAMMAIIJGAM)*SAHIIJSAH)

DO 129 II=I,NGSPl

129 GAMSAH(II)=GAMSAH(II)+GAMSA(II)

C

NPRPI=N+IR+I

DO 133 I=I,N_RPl

ALFSYS(1)=0.

II=I-N

JMIN=MAXO(II,1)

12=IR+I

JMAX=MINO(12,1)

DO 133 J=JMIN,JMAX

K=I+I-J

133 ALFSYS(1)=ALFSYS(1) + BETA(J)*ALPHA(K)

NPR=N+IR

NGSP2=NGSPI+I

DO 135 I=NGSP2,NPRP1

135 GAMSAH(1)=0.

DO 137 I=I,NPRPl

137 ALPH(1)=ALFSYS(I}-GAMSAH(1)

DO 139 I=I,NPRP1

J=NPRPI+I-I

139 HPLA(1)=ALPH(J)

CALL ROOTI{NPR,HPLA,NRROOT,APPROX,ISIG)

WRITE(2,15) (NRROOT(1),I=I.,NPR)

15 FORMAT(1H1,20X,25H RESULTING POLE POSITIONS///(15X_2E20.6//) )
C
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GO TO 402

55 WRITEI2,161
16 FORMATI/////22H SYSTEM NOT OBSERVABLE)

45O CONTINUE

WRITE(2,10)

CALL DUMP

STOP

END
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SUBROU TINE ALPHAS

Input: N, AS, ALTLS, MPRNTS

Output: ALPHAZ, SS, INDEX, ELINV,

ENORMS

¢
Replace single precision variables with double .precision l

(A and ALTL) I

Set SA equal to the Identity matrix (double precision)

¢
,=j+1 I j=1 I

¢
I NN : N-J+I

(s): (A) x (SA)

¢
TRACE : Main

¢
diagonal of (S)

[ ALPHA(NN) : - TR ACE / J

¢
Add these elements of ALPHA to corresponding element ofmain diagonal of (S).

INDEX(NN) : NN- 1

¢
1

Set (SA) : (s), I
(ss) : (s) I

If MPRNTS = 1, WRITE (SS) )

been computed ? /

%ES

I ALPHAZ (N+I) = 1. 0 !

Has S
O

_ NO
(ROW) = (S)x (ALTL)

I,
INDEXN : INDEX(NN)

ELINV(INDEXN, I) : ROW(I, 1)
I: 1, N

J<N ]

IConvert ALPHA to single precision
setting (ALPHAZ) = (ALPHA) bY I

I

+
{ Last row of ELINV = ALTL [

+

i ENORM : Sum of absolute values ofelements of So
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COMPUTE ALPHAS WITH DOUBLE PRECISION ARITHMETIC (INPUT,OUTPUT S.P.)

C REQUIRES SPECIAL SUBROUTINES MATMPY,DMATMP

SUBROUTINE ALPHAS(N,AS,ALTLS,ALPHAZ,SS,INDEX,MPRNTS,ELINV,ENORMS)

C
DIMENSION AS(N,N),ALTLSIN,I),ALPHAZINI,SS(N,N),INDEXIN),

2 ELINV(N,N),
3 A(5,5)_ALTLIS_l),ALPHA(6),S(5_5),SA(5,5)_ROW(591)

C
C COMMENT ON DIMENSIONING - ALTHOUGH DIMENSIONED FOR N=59 THE WRITE
C STATEMENTS ARE GENERAL FOR N LESS THAN 25.

C
DOUBLE PRECISION A,ALTL,ALPHA,S,SA,TRACE,DFLOTJ,ROW,ENORM

C
C_I_____.._______

C IF MPRNTS=I, S-MATRICES ARE TO BE WRITTEN

GO TO (1,2),MPRNTS

IPRNT=I

IF(N.GT.10) IPRNT=2
IF(N.GTo20) IPRNT=3

2 CONTINUE
C
C GFT INPUT INTO OOURLE PRECISION

DO I01 I:I,N

ALTL(I,I)=ALTLSII,I)

DO 101 J=I,N

IO1A(I,JI=ASII_J)

DO B I=I,N

DO B J=I,N

B SAII,J)=O.DO
DO a K=I_N

& SA(K,K)=loD0

C

C USE LEVERRIER ALGORITHM TO COMPUTE SUCCESSIVE ALPHAS AND S-MATRICES

C (N-I THRU 0)
C

DO _2 J=I,N

NN=N-J+I
CALL DMATMP(A,N,SA,N,N,S)
TRACE=C°DO
DO 6 K=I,N

6 TRACE= TRACE + S(K,K)
FLOTJ= FLOATIJ)
DFLOTJ=FLOTJ
ALPHA(NN) = -TRACE/DFLOTJ

DO 8 K=I_N
8 S(K,K)=S(K_K)+ ALPHA(NN)

INDEX(NN)=NN-1
DO I0 I=I,N

DO ]0 JJ=I,N
i0 SA(I,JJ)= SII,JJ)

DO lOB I=I,N
DO 103 JD=I,N

103 SSII,JD)=S(I,JD)
C
C IF MPRNTS=I,WRITF S-MATrIX

GO TO(51_405)_MPRNTS

51 wRITF(2,12) INDEX(NN)
12 FORMATI///SX,TH INDEX= I_//1
22 DO 25 K=I_IPRNT

JMIN=IK-1)*IO + 1
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_AX=K_IO

JMAX=M INO (N ,#MAX }

WRITE(2,]3) JMIN_JMAX

13 FORMATI5X,SH COLUMNS,IB.5H THRU.IB//)

DO 25 I=I.N

25 WRITE(2,1_I (SS(I,JMI,JM=JMIN,JMAXI
14 FORMAT(10X,IOE12.4/)

405 CONTINUE

C

C THE ZERO-TH S-MATRIX SHOULD BE EQUAL TO ZERO. IT IS COMPUTED AS A

C CHECK ON ROUNDOFF ERROR, AFTER IT IS COMPUTED, USE OF ALGORITHM

IS ENDED.

IF(INDEX(NN))42,42,31

31 CALL DMATMP(S,N,ALTL,I,N,ROWI

INDEXN=INDEX(NN)

DO B2 I=I,N

32 ELINV(INDEXN,I)= ROW(I,I)

_2 CONTINUE

C

C___@_________

C GATHER LOOSE ENDS
C

ALPHAZIN+I)=I.O

DO 105 I=I,N
105 ALPHAZ(1)=ALPHA(II

INDEX(N+I)=N

DO _ I=I_N

_B ELINV(N,I)= ALTL(I,1)

ENORM=O.

DO _4 I=I,N

DO _4 J=I,N

4_ ENORM=ENORM+DA_S(S(I,J})

ENORMS=ENORM

IF(_PRNTS.EQ.I)WRITE(2,10n)

100 FORMAT(1H1)

RETURN

END
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SUBROUTINE POLYWG

Input: N, ALPHA, ELINV,
APP R OX

Dummy: COEFF

Output: ROOTS, ALFOPT

1
NX2 = N*Z

Define NPI = N+I

NMI = N-I

C,

Set COEFF(I) : 0. , I : I,NPI

_It/INI : +I

I
__ SIGNI : - SIGNISet summation limits on j

I Icomponent subscript I+l)

YES
l

(PARTComputezA)firstpart of _.i ]

Compute second part of _ I(PART ZB) i

1
Add to_ i term computedpreviously

I

I

(

Compute coefficients of S Zn and S°

CpmDute PART2 of onefficient of
S (znzz) .

Add to
n-i

WRITE COEFF(I), I : i, NPI )

Find roots of Nth order polyno-

mial having the computed coeffi-
cients. These are roots of a

polynomial in s 2. WRITE ROOTS

(I), I:l, N

Take complex square root of

each root in s Z to get roots in s.

Discard roots in right half plane.

WRITE ROOTS(1), I : I, N

polynomial.

I:INP

Multiply remaining roots to get

coefficients of characteristic

WRITE ALFOPT (I),

i
RETURN ]
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SUBROUTINE POLYWG(ALPHA,ELINV,C,COEFF_N,ROOTS,APPROX,ALFOPT)
C

C REQUIRES SPECIAL SUBROUTINE ORDINV
C

C THIS SUBROUTINE IS A MECHANIZATION OF EQUATIONS (44) AND (57) OF THE

C PAPER ON HIGHER ORDER SYSTEM DESIGN BY BASS AND GURA,
C________@_____

Q
DIMENSION ALPHA(1),COEFF(1),ELINV(N,N),C(N,N),ROOTS(2I,ALFOPT(1)

C
C NOTE ON DIMENSIONS -(1) INDICATES CALLING ROUTINE TO BE DIMENSIONED

C (N+I), (2) INDICATES (N*2},
C

COMPLEX ROOTS .APPROX ,ALFOPT
C
************************************************************************

NX2=N*2
NPI=N+I

DO 101 I=I,NPl
101COEFF(I)=O,

SIGNI=I,
NMI=N-1

C
C____________

C
C COMPUTE EVEN COEFFICIENTS OF THE POLYNOMIAL DELTA(2N). ODD COEFFIC-

IENTS ARE ZERO,

DO 430 I :I_NMI
SIGNI: -SIGNI
JMIN:I

JMAX= I
IX2 = 1"2
IF( IX2.GT.N ) JMIN= IX2-N+I

C
C COMPUTE ALPHA-HAT TERM (PART 1)

C

SIGNJ=+I.
JEVN=JMIN-2*(JMIN/2)
IF(JEVN.GT.0) SIGNJ=-I,

DO 105 JPl=JMIN_JMAX

SIGNJ=-SIGNJ

JS=IX2-JPI+2
105 COEFF(I+I):COEFF(I+I)+ALPHA(JP1)*ALPHA(JS)*SIGNJ

COEFF(I+I)=2.*COEFF(I+I)+SIGNI*ALPHA(I+I)*ALPHA{I+I)
*************************************************************************

IF(I°_Q.NM1) GO TO _30

JMIN=I
IF(IX2°GT.NMI} JMIN=IX2-N+2

JEVN:JMIN-2*(JMIN/2)
SIGNJ=I.
IF(JEVN°GT.O) SIGNJ=-I°

PART2A=O°
C

C COMPUTE EPSILON TERM ( 2 PARTS)
DO Ii0 JPI=JMIN,JMAX
SIGNJ=-SIGNJ

ANS=O,
JS=IX2-JPI+2

DO 107 JJ=I,N
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DO 107 KK=I,N

107 ANS=ANS+ELINV(JP1,JJ)*C(JJ,KK)_ELINV(JS,KK)
110 PART2A=PART2A + SIGNJ*ANS

PART2B=O.

DO 120 JJ=I,N
DO 120 KK=I,N

120 PART2B=PART2B + ELINV(I+I,JJ)*C(JJ,KK)*ELINV(I+I,KK)
C
C ADD EPSILON TERM TO ALPHA-HAT TERM

COEFF(I+I)=COEFF([+I) + 2.*PART2A + PART28*SIGNI

430 CONTINUE

C

C

C
C 2N-TH AND ZERO-TH TERM ARE COMPUTED SEPARATELY

C

C

C COEFFICIENT OF S_*2N -

NEVN=N-2*(N/2)

COEFFIN_I}=-I.

IFINODD.GT.0)COEFF{N+])=I.
COEFF(1)=0.
DO 124 JJ=I,N
DO 12A KK=I,N

12_ COEFF(1)= COEFF(1) + ELINV(1,JJ)_C(JJ,KK)*ELINV(1,KK)
COEFF(1): COEFF(1) + ALPHA(1)*ALPHA(I)

C
************************************************************************

C PART 2 OF COEFFICIENT OF S**(2N-2)
C

SIGNJ=-COEFF(N+I)
C PART2=O.

DO 126 JJ=I,N
DO 126 KK=I,N

126 PART2 = ELINV(N,JJ)*C(JJ,KK)*ELINV(N,KK)
C

C ADD PART2 TO PART1 ((N-l) TERM)
COEFF(N)=COEFF(N)+SIGNJ*PART2

C
C__*__*__*_*__*_@____*_

C WRITE HEADING FOR INTERNAL POLYWG WRITE STATEMENTS.
WRITE(2,11)

11FORMAT(1HI 15X,46H SUBROUTINE POLYWG PRINTS COEFFICIENTS OF EVEN

2 35H POWERS OF S (ODD POWERS APE ZERO), /
3 20X,50H N ROOTS OF POLYNOMIAL FORMED BY EVEN COEFS. ONLY,

4 23H N L.H.P. ROOTS OF 2NTH / 20X.18H ORDER POLYNOMIAL,

5 52H AND THE COEFFICIENTS GENERATED BY THE L.H.P. ROOTS.

6 )

C

C WRITE COEFFICIENTS COMPUTED ABOVE.
C

WRITE(2,12)

12 FORMAT(///// 20X,31H POWER OF S COEFFICIENT // )

DO 51 I=I,NPl

NNX2=2*I-2
51WRITE(2,13)NNX2,COEFF(I)

13 FORMAT(24X,I3.12X.E15,8)
C

C

C FIND ROOTS OF POLYNOMIAL HAVING THE N+I COEFFICIENTS PREVIOUSLY COM-
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PUTED. THESE ARE THE ROOTS OF THE FORM (S_-2 - ROOT).

CALL ORDINV(NP1,COEFF)

CALL ROOTI(N,COEFF_ROOTS,APPROX,M}
WRITE(2,14) (ROOTS(I),I=I_N)

14 FORMAT(////29H ROOTS FROM EVEN COEFFICIENTS /
2 //(20Xt2E20,7) )

C

C TAKE THE COMPLEX SQUARE ROOTS (OF THE PREVIOUS ROOTS) WHICH ARE IN THE
C LEFT HALF PLANE, THESE ARE THE OPTIMAL CLOSED-LOOP ROOTS,

DO 404 I:I,N

ROOTS(1):CSQRT(ROOTS(1))

ROOTRE=REAL(ROOTS(1))

IF(ROOTREoLT.O.)GO TO 40_

ROOTS(1)=-ROOTS(1)
kOk CONTINUE

WRITE(2,10)

!0 FORMAT(1HI)

WRITE(2,15) (ROOTS(1)_I=I,N)
15 FORMAT(IOX,3OHROOTS WITH NEGATIVE REAL PARTS // (2E20.7))

C

C MULTIPLY THE ROOTS TO GET THE COEFFICIENTS OF THE DESIRED CLOSED-LOOP

C CHARACTERISTIC POLYNOMIAL.

C

CALL POLCO(N,I.0,ROOTS_ALFOPT)

WRITE(2,16)

16 FORMAT(///50H COEFFICIENTS OF POLYNOMIAL GENERATED BY ROOTS IN •

1 15HLEFT HALF PLANE //IOX,IOHPOWER OF S 26X_11HCOEFFICIENT /

2 40X,4HREAL I_X,9HIMAGINARY // )

NP=N+I

DO 53 I=I,NP

NMI=NP-I

53 WRITE(2,17)NMI,ALFOPT(1)
17 FORMATIlkX_I3,12X_2E20.8)

RETURN

END
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SUBROUTINE SYNTHI

Input: N, A, ALPHA, DSIRD, ALTLTR

Dummy: ATR, ATP, AAT, EN, BLTL, AB,

TEMP, AZ

Output: GLTL, DSTAR

I
Compute DSTAR
D v = (a, Aa ..... bYAn- la)

_V

Compute BLTL (b) by solving
D_':=b= en

where e n = (0, 0, 0 .... 0, I)_''"

Compute GLTL by
n

g =- /_ (_i_l-_i_l)(av_) i-lb

i=l
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SUBROUTINE SYNTHI(N,A,ALPHA,DSIRD,ALTLTR,ATR,ATP,AAT,EN,BLTL,AB,

2 GLTL,TEMP,A2,DSTAR)

EQUIVALENCE (AAT,BLTL),(EN,AB),IATP,TEMPi

DIMENSION AIN,N),ALPHAI2),ALTLTRI1,N),AATIN,N),ATP(N,N),ATR(N,NI,

2 AB(N,li,A2(N,N),BLTLIN,1),DSTARIN,N)_DSIRD(2),EN(N,I),

3 GLTLIN_I),TEMP(N)

C COMMENT ON DIMENSION - (2) INDICATES DIMENSION OF N+I IN MAIN PROGRAM.
C

DO I I=I,N

DO 1 J=I_N
ATPII,J)=O.

1 ATR(I,J)=A(J,I)

DO 2 I=I,N

2 ATP(I_I)=I.
C

C COMPUTE DSTAR (TRANSPOSE OF CONTROLLABILITY MATRIX). AAT IS SET EQUAL

C TO DSTAR TO AVOID DESTROYING DSTAR IN THE SIMULTANEOUS EQUATION
SUBROUTINE (SIMEQ).

DO 7 K=I,N

DO I01 I=I,N

DSTAR(K,I}=O.

DO I01 J=I,N

101 DSTAR(K,I)=DSTAR(K,I)+ALTLTR(I,J)*ATP(J.I)

DO 3 I=I,N

AAT(K,I)=DSTAR(K,I)

CALL MATMPY(ATP,N,ATR,N,N,A2)

DO A I=I,N

DO _ J=I,N

4 ATP(I_JI=A2(I_J)

7 CONTINUE
C

C SOLVE (DSTAR}X(BLTL)=(EN) FOR BLTL

C

DO 8 I=I,N

8 EN(I,I)=O,

EN(N,I)=I,

SCALE=I.O

CALL SIMEQ(N,N,1,AAT,EN,SCALE,TEMP,MM)

C

C THE SOLUTION VECTOR BLTL IS THE FIRST COLUMN OF AAT (SEE COMMENT ON

C EQUIVALENCE STATEMENT)

GO TO (_02,52,53).MM

52 W_ITE(2,1_I

1_ FORMAT(////42H UNDERFLOW OR OVERFLOW IN SUBROUTINE SIMEQ)

GO TO _02

53 WRITE(2,15)

15 FORMAT(////51H SYSTEM NOT CONTROLLABLE (DSTAR-MATRIX IS SINGULAR))
k02 CONTINUE

C

C COMPUTE THE CON@ROL VECTOR GLTL, THIS IS THE PRIMARY RESULT OF THIS
C SUBROUTINE AND OF THE MAIN PROGRAM,
C

DO 9 I=I_N
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9 GLTL(I,I)=Oo
DO10 l:ItN
DO I0 J=IPN

10ATP(I.J)=O°
DO11 I=I,N

II ATP(I,I)=I.
DO 13 K=I,N
CALL MATMPY(ATP,N,BLTL,I,N,AB)

DO 12 l=itN
12 GLTL(191)=GLTL(I,I) + (ALPHA(K)-DSIRD(K))_AB(I,I)

CALL MATMPY(ATP,N,ATR,N,N_A2)

DO 13 I=I,N

DO 13 J=I,N

13 ATP(19J)=A2(19J)

RETURN
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SUBROUTINE OBSMAT

Input: N, ATT, M, H

Dummy: A2, A3, VNXM,
SUM, U, W, NGLIST

Output: IJDLTL, V, ICOLM

Set initial values

÷
VNXM + next M possible

columns of V (Column index =

Iv)

¢
ICOLM = ICOLM + 1

Set IV =0

¢
H

JV = JV-l_h IV = IV+I

;I

Does IV appe_ar on NGLIST?

YES ¢ NO

I ore columns left in VNXM?

¢
I IJDLTL (IV, ICOLM) = i(Filter arrangement matrix)

¢
JV = JV+I

Next column of VNXM takententatively as next column of V

¢
First column of V?

_YES

Compute mag-
nitude of V

VMA VM6 =

• 00006*VMAG

¢

NO

Compute orthogonal
vector W(J), and

its magnitude,
WMAG

I

i I

_ YES ]

NO _1

I

Compute unit

vector U(I, 1)

Add IV to reject list,

¢

Check independence - ?1Is WMAG >VMAVM6

No [YES
NGL1ST I

¢
Unit vector U(I, JV)

= W(I)/WMAG, I = l, N

¢
Compute average mag-
nitude of columns of V

VMAVM6 = . 00001*

(Av. Mag.

1
Have N columns of V

been computed ?

More columns

in VNXM ?

I 'RETURN

(A3) = (ATT) x (A2)

Has (A) been raised
to the Nth )ower?

NO

-_ (A Z): (A3)[

YES

r

Set 1COLM -- 100

(Non-observable system)

1
RETURN
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C OBSERVABTLITY MATRIX
SUBROUTINE OBSMAT(N,ATT,M,H,A2_A3,VNXM,SUM,U,W_NGLIST,IJDLTLt

2 V,ICOLM)
DIMENSION ATT(NtN),H(N,N),A2(N,N),A3(N,N),VNXMIN,N)_U(NgN)t

2 IJDLTL(N,N),V(N,N),SUM(N),WIN)_NGLIST(N)

C____________

C

NMM=N-M

DO 4 I=I,M

DO 4 J=I,N

4 IJDLTLII_J) = O
C
C____@________

TAKE FIRST M COLUMNS (NXM H-MATRIX)C

C

DO 5 I=I,N
DO 5 J=I,N

5 A2iI,J)=O.
DO 7 I=I,N

7 A2(I,I)=I.
JV=0

IATP=I

VMAGSM=O,

VM_VM6=O,
NGLIST(1)=O
MLIST=I

ICOLM=O

C

C____________

9 CALL MATMPY(A2,N,H,M_N_VNXM)

ICOLM=ICOLM+I

IV=O
C
************************************************************************
C COMPARE COLUMN INDEX WITH N.G.LIST, ELIMINATE COLUMNS ON LIST.

I0 IV=IV+I

DO 12 I=I,MLIST

IF(NGLIST(1)-IV)I2,10,12

12 CONTINUE

IF(IV-"-])14,28,_5
14 CONTINUE

IJDLTL(IV,ICOLM)=I

C

C TAKE A COLUMN AT A TIME

C

JV=JV+I

DO 15 I=I,N
15 V(I,JV)=VNXM(I,IV)

IFIJV-1)35,110,16
110 V_AGSQ=O

DO 111 I=I,N

111 VMAGSQ=VMAGSQ+V(I,JV)_V(I,JV)
VMAG=SQRT(VMAGSQ)

VMAVM6 = .OOO906_VMAG

DO 112 I=I,N

112 UII,JV)=V(I,JV)/VMAG
GO TO 10

C

C COMPUTE ORTHOGONAL VECTOR W
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ii

16 JVM]=JV-1
DO 19 J=I,N
SUM(J)=O.
DO 18 I=I,JVM1
DO 18 K=I,N

18 SUM(J)=SUM('J)+UiK.I)*V(K.JV)*U(J,I)

19 W(J)=V(J.JV)-SUM(J)
C

C IF MAGNITUDE OF W IS ZERO,REJECT COLUMN AND TRY NEXT

WMAGSQ =C.

DO 21 [=I,N

21WMAGSQ = WMAGSQ + W(1)**2

WMAG = SQRT[WMAGSQ)

IF(WMAG - VMAVM6) 23,24,24

23 MLIST=MLIST +i
NGLIST(MLIST)=IV
IJDLTL(IV_ICOLM)=O
JV:JV-1

GO TO 1_
2& CONTINUE

DO 25 I:I,N
25 U(I,JV)= W(1)IWMAG

VMAGSQ=O,

DO 26 I=I,N

26 VMAGSQ = VMAGSQ + VlI.JV)*V(

VMAG=SQRTIVMAGSQ)

VMAGSM= VMAGSM+VMAG

VMAVM6= ,O00001*VMAGSM/FLOAT

IFIJV-N)27_40,15

2? IFIIV-M)lO,28.28

,JV)

JV )

28 CALL MATMPY(ATT,N.A2.N,N.A3)
IATP:IATP+I

IF(IATP-N-1)29_32.35
29 DO 30 I=I.N

DO 30 J=I_N
30 A2(I_J)=AB(I,J)

GO TO 9

32 ICOLM=IO0

3_ GO TO _O

35 WRITE(2,36)
36 FORMAT(/////27H ERROR IN OBSMAT SUBROUTINE)
_0 RETURN

END
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SUBROUTINE DMATMP(A,NR,B,NC,N,C)

DIMENSION AINR,N),BIN,NC),CINR,NC)

DOUBLE PRECISION A,B,C

DO I I=I,NR

DO 1 K=I,NC
CII,K)=O,DO
DO 1 J=I,N

C(I,K)=C(I,K)+AII,J)*BIJ,K)
RETURN
END

SUBROUTINE MATMPY(A,NR,B,NC,N,C)

DIMENSION A(NR,N),B(N*NC),C(NR,NC)

DO i I=I,NR

DO i K=I,NC

C(I,K)=0.O

DO 1 J=I,N
C(I,K)=C(I,K)+A(I,J)*BIJ,K)

RETURN

END

SUBROUTINE ORDINV(N,V)

DIMENSION V(N)

NHALF=N/2

DO I I=I,NHALF

NI=N+I-I

A=V(NI)

V(NI)=V(1)

V(1)=A

RETURN

END
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SYMBOL DICTIONARY

Fortran

Symbol

A(I, 7) t

AAT(I, 7)

AB(I, 1)

AG(I, 7)

Mathematical

E quivalent,

if any

A

(A") i b

ag

Definition

nxn matrix which

defines the auton-

omous set of linear

differential first

order equations of

the form

: Ax,

where x is an

n-vector

A dummy matrix

which is set equal to

DSTAR to make use

of the simultaneous

equation sub routine

SIMEQ in solving

D""b : e n

for b (BLTL)

Used in the compu-

tation of g.

Used to find A by

7_ = A+ag_: _

Used in

CNTRL2

SYNTHI

A LPHAS

SYNTH1

SYNTHI

CNTRL2

J-Except as otherwise noted, subscripts run from 1 to N
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Fortran
Symbol

ALFOPT(I)

ALFSYS(1)

I=l, N+R+I

ALPH(I)

I:l, N+R+I

ALPHA(1)

I=l, N+I

ALPHAZ(I)

I:l, N+I

Mathematic al

Equivalent,

if any

i=o, n

Definition

Coefficients of

optimal closed-loop

characteristic equa-

tion as computed by

POLYWG. They are

complex but the

imaginary part is

non-zero only due to

computing error.

They are also in the

wrong order. (See

OPTALF)

Coefficients of

A(S)An-v (S) in

Eq. (28b)

Coefficients of

- in Eq. (Z8b)A2n_v

Coefficients of the

characteristic equa-

tion of the plant,

A(S), in ascending

powers of S from

0 (I=i) to n (I=N+I).

Dummy variable

used in ALPHAS to

indicate single pre-

cision (ALPHA is

double precision in

A LPHAS)

Used in

POLYWG

CNTRL2

FILTER

FILTER

CNTRL2

FILTER

SYNTH1

A LPHAS

A LPHAS
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Fortran
Symbol

ALPHA2(I)

I=l, N+I

ALT L(I, 1)

ALT LS(I, i)

ALTLTR(1, I)

APPROX(I)

ATGI(I, 1 )

ATILDE(I, J)

ATP(I, J)

Mathematical

E quiva lent,

if any

1

i--o,n

a

a f,_

(A 1 g

Definition

Coefficients of the

closed loop char-

acteristic equation

5(s).

n-vector which is

called the actuator

vector. From the

equation

_:= Ax + a9

Dummy used in

ALPHAS to indicate

single precision.

Transpose of ALTL

Guess at roots to

assist ROOT1 sub-

routine (library).

Intermediate vari-

able used to com-

pute d (DL)

Analogous to A,

except it defines the

closed loop system.

Dummy matrix used

to represent suc-

cessively higher

powers of A;:"

Used in

CNTRLZ

CNTRL2

ALPHAS

CNTRL2

SYNTHI

CNTRL2

FILTER

POLYWG

FILTER

CNTRL2

SYNTHI
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Mathematical
Fortran Equivalent,
Symbol if any Definition Used in

ATR(I, 7) A *''_ Transpose of A SYNTHI

ATT(I, 7) (A)"

AZ(I, 3)

A3(i, J)

etc,

BAGSUM(I)

BETA(I)

I=l, R+l

BLT L(I, I)

c(i, 3)

CLROOT(1)

z_ (i)*
n-v g

=Or

{.

1

b

C

Transpose of the

closed-loop system

matrix

Dummy matrices

Intermediate variable

used to compute d

Coefficients of S in

common denom-

inator of filter

(An_v)-

Vector resulting from

the solution of

D"b = e n

The weighted per-

formance index.

Achieved closed

loop poles

The performance

indices of

c=K ICI + KzCZ

CNTRL2

FILTER

FILTER

FILTER

CNTRL2

SYNTH1

CNTRL2

POLYWG

CNTRL2

CNTRL2
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Mathematical

Fortran Equivalent,

Symbol if any Definition Used in

POLYWGCOEFF(I)

I=1, N+I

DL(1)

DSIRD(I)

I=l, N+I

DSTAR(I, J)

ELINV(I, J)

EN(I, 1)

d

D

L-I

e n

Dummy array used to

compute the optimal

coefficients ALFOPT

The coefficients of

the filter numerators

arranged consecu-

tively. See definition

following Eq. (31).

Coefficients of the

desired closed loop

characteristic equa-

tion. Corresponds

to OPTALF(I).

The transpose of the

c ontr ollability

matrix, D

Inverse of L.

L-1 =(Sla ,S2a,...,

S n a )':-"

n
e

0

0

• -nth

l element

FILTER

SYNTHI

CNTRLZ

SYNTHI

ALPHAS

CNTRL2

FILTER

SYNTH1
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Fortran
Symbol

ENORM

FILZRO(1)

GAMMA(I, J)

I--l, M

Y=l, ICOLM

GAMSAH(I)

I=l, N+ICOLM+ 1

Mathematical

Equivalent,

if any

_ij

Definition

Error norm-sum of

the absolute values of

the elements of the

final S-matrix com-

puted (So) by

ALPHAS. Used as a

check on computa-

tional accuracy.

Used repeatedly to

compute and write

the filter zeros.

Each of M rows of

GAMMA represents

the coefficients of

increasing powers of

s of each of M filter

numerators.

I=l, 2 .... ,ICOLM

corresponding to

o 1 r
S _ S ,... S

Coefficients of s in

2nd term of Eq. (28b),

M

E A(i)(s) "

i=l

n

(hi • Sja) s j-1

j=l

Used in

A LPHAS

FILTER

FILTER

OBSMAT

FILTER
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Fortran
Symbol

GLT L(I, 1)

GLT LT R( l, I)

H(I, 7)

HPLA(1)

I=l, N+R+l

Mathematic al

Equivalent,

if any

g*

H

Definition

Control vector,

the equation

x=Ax+a_,

where _ = g. x

from

Transpose of the

control vector

The sensor matrix.

Each of M sensors

represented by a

column of H.

The elements of

ALPH(1) in reverse

order

Used in

CNTRL2

FILTER

SYNTH1

CNTRL2

FILTER

OBSMAT

FILTER

HSTAR(I, 7) H Transpose of H FILTER

ICOLM Number of columns

in GAMMA(I, 7).

Tells maximum

number of zeros of

filter (ICOLM- l).

Used as an indicator

of non- observability

by setting equal to

I00.

IJDLT L(I, 7)

I=l, M

7=i, ICOLM

Filter arrangement

matrix. Elements are

either 1 or 0.

FILTER

OBSMAT

OBSMAT

FILTER
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Mathematical
Fortran Equival ent,
Symbol if any Definition

INDEX(If

I:l, N+I

IPRNT

MPRNTS

N

NGLIST (1)

I=l, MLIST

NRROOT(I)

I= ], N+R

n

Used to allow print-

out of subscript zero,

which is not allowed

in Fortran.

Determines printing

format in ALPHAS.

Value depends on

size of array to be

printed.

Option to print

S-matrices of Subr.

Alphas decides by

input value of

MPRNTS. Printing

occurs if

MPRNTS = l, does

not if MPRNTS = 2.

Order of the plant

characteristic

equation.

List of rejected col-

umn numbers. Used

to compute observa-

bility matrix.

Closed loop poles of

system with filter.

Used in

A LPHA S

CNTRL2

A LPHAS

ALPHAS

All

OBSMAT

FILTER
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OBSERV(I, J)

OLROOT(I)

OPTALF(1)

I=l, N+I

POLE(I)

I= i, IR

Mathematic al

Fortran Equivalent,

Symbol if any Definition

K

POLES(1)

ROW(I, 1)

S(I, J) S

Ob se rvability matrix

computed by

OBSMAT. Dummy

matrix in OBSMAT

corresponding to

OBSERV is V.

Open loop poles

The real parts of

coefficient s

ALFOPT, with order

corrected.

The common filter

poles. R poles taken

from an arbitrary

list of N provided as

input.

The N poles available

as common filter

poles.

Dummy array used in

ALPHAS. ROW is a

column matrix, but

is a row in ELINV.

The numerator trans-

fer matrix. Succes-

sive values of the

matrix are computed

as a part of computing

ALPHA(I).

Used in

FILTER

CNTRL2

CNTRLZ

FILT E R

FILTER

A LPHAS

CNTRL2

A LPHAS

5-39



Fortran

Symbol

SA(I,J)

SAH(ff, I}

J=l, N

I=l. M

SCALE

su_(_)

TEMP(I)

TRACE

U(I, I)

Mathematical

Equivalent,

if any

h i • S.
ja

tr

Definition

Dummy variable used

zn ALPHAS to

replace S.

Coefficients of open

loop numerators

A scale factor used

in the library sub-

routine SIMEQ.

Dummy array used

by OBSMAT in

determination of

column independence.

Temporary storage

required by library

subroutine SIMEQ.

Sum of the elements

on the main diagonal

of a matrix.

The columns are a

series of unit vectors

formed successively

by OBSMAT in

determination of

column independence.

Used in

ALPHAS

FILTER

SYNTHI

OBSMAT

SYNTHI

A LPHAS

OBSMAT
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Fortran
Symbol

VK(I, J)

I =I, N

7=i, N+I

VNXM(I, J)

I =i, N

Y=l, M

W(I)

Mathematical

Equivalent,

if any

(A::_")i H

Definition

A dummy matrix used

to represent OBSERV

and BAGSUM in the

library subroutine

MATS.

Dummy matrix used

successively in

OBSMAT.

The orthogonal vector

computed by

OBSMAT. Recom-

puted successively.

Used in

FILTER

OBSMAT

OBSMAT
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A-_ATRIX

-0.0322

-0.

0.0693

-0.

0.7620

*C_UATORVECTOR (a_

CONTROL SYNTHESIS PROIRAM 2

-0.0194 1,0000

-0. 1,0000

-0. -0,

-0. °0,

-0. -0,

-0.0_11

-0.

-0.4?40

-0.

-1760.9000

"0.

-0.

-0°

17.5

°0°

-0.

_0.

t.0000

-3.3600

PERFORMANCE MATRICES

DRIFT MINIMUM C_ or C41

0.1040E-02 0.6240E-03 -0. 0.6800E-03 -0.

0._240E-03 0.3750_-03 -0. 0.4300E-03 -0.

°0. -0. -0, "0. -0,

O,68nOE°03 0,4100E-03 -0, 0,4450E-03 -0,

-0. -0, -0, _0. -0.

LOAD MINIMUM (_ Or CC)

o.16100 ol -o, -o, 0.5600E 01 -0.

o0. -0, -0, _0. -0.

-0. -0. -0, _0. -0.

0.56hOE 01 -0. -0, 0.1610E 01 -0.

°0; -0. -0, aO, -0.

S-NATRICES OF OPEN LOOP

INCEX: . (s,)
COLUMNS I THOU

0.336nE 01 °0.1940Es01

-0, 0.339_E 01
O.693_E-01 -0.
O, O.
0.7620E O0 =0.

0.10006 01 =0,2110E-01 sO.

O.IO00E 01 =0, _0.
0.3392E 01 _0,4740E-00 _0.

O. 0,3392E 01 0.1000E 01
-0. _0.1760E 04 0.3220E°01
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INdEx=3 (s_
COLUMNS 1 THRU 5

0,1760E 04 -0.6518E=01

0.6930E-01 0.1761E 04
0.2328E-00 -0.1344E=02
0.7620E 00 -0.

-0. -0.1478E=01

0.3341E 01 =0,5449E 00 =0.2110E-01

0.3392E 01 =0.4740E-00 =0.

0.1761E 04 =0,1609E OZ =0,4740E-00
-0. 0,3889E-01 0.3220E-01

0.7620E O0 =0.5670E 02 =0.6930E-01

INCEX=2 (s_!
COLUMNS 1 THRU 5

-0.1350E-12 -0.3415E 02

0.2328E-00 0.5647E 02
0.1216E 03 -0.4517E=02

-0. -0.$478E=01
-0.1137E-12 O.

0.1760E 04 =0.1583E 01 =0.4740E-00

0.1761E 04 =0.1609E 01 =0.4740Eo00
0.5670E 02 =0,5620E°01 =0.1673E-01
0.7620E 00 =0,2315E-00 =0.6930E-01

-0.1478E-01 0.1216E 03 0.1344E=02

IN£Ex= 1 IS,)

COLUMNS I THRU

-0.1269E-09

0.1216E 03
-0,9356E-14
-0.1137E-12

0.2791E-12

0.2673E=14 -0.3415E 02 0,3090E-01 0.9196E=02

-0.1216E 03 0.56706 02 _0,5620E-01 =0.1673E-01
-0.2360E 01 -0.1269E-09 0.5517E-13 0.5389E-13

O, -0.1478E-01 0.4517_-02 0.13446-02
0.1776E=14 °0.2t62E-12 =0.2360E 01 0.7243E-10

COLUMNS: TNRU

0.3029E-_9 0.2463E=11 -0.1269E-09 =0,3777E-11 0.4875E-13

-0.9356E-14 0.2988E=09 -0.1269E-09 0,5517E-13 0.53ggE-13
-0.8741E-11 0.1853E=15 0.2988E-09 =0o8598E-10 =0,1136E-12

0.2791E-12 0,1776E=14 -0,2162E-12 =0,5333E-09 0.7243E-10
0.1025E-09 -0.3932E;14 0.9130E-12 =0.3166E-06 -0.3671E-09

OPEN LOOP CHkRACTERISTIC EQUATION

COEFFICIENTS OF ASCENDING POWERS OF S ( 0 TO 5 )

0.2359RE 01 -0,12164E 03

ROOTS OF OPEN LOOP CHkRACTERISTIC EQUATION

REAL IMAGINARY

0.19691E-01 0,

0,23625E-00 0,

-0,28815E-00 O,

-0,$6800E O_ 0,41925E 02

-0,16800E 05 =0,41925E O_

? SIGNIFICANT FISURES

0,56475E 02 0,17605E 04 0,33922E 01 O,IO000E 01
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ELINV (LSED IN FILTER PROGRAM)

0.160555E-00

-0o827604E O1

-0.368406E-00

-0.

-0.

-0.292019E=00 0.940875E-12 0.234736E-01 0.126468E-08

-0.827604E 01 -0.292019E-00 -0,120998E 01 0.234736E-01

-0. -0,827604E 01 0,562212E O0 -0.120998E 01

-0. -0. O.t74600E 02 0.562212E O0

-0. -0_ -0, 0.174600E 02

_LINV = L-I = ]')_"

PERFORMANCE WEIGHTING FACTORS

DRIFT MINIMI_ING (KAPPA-ROOF)

LOAD MINIMIZING (KAPPA-TILDE|

-0.

O.lOOE 06

WEIGMTE£ PERFORMANCE INDEX - C

0.1610E 06 -0. O, 0.56ODE 06 O,

-O. -0. O, =0. O.

O. O, O, O. O,

O,56nOE 06 -0, O, O.1610E 06 O.

O. O, O. O. O.

SUBROUTINE POLYWG PRINTS COEFFICIENTS OF EVEN POWERS OF S IODD POWERS ARE ZERO),
N ROOTS OF POLYNOMIAL FORMED BY EVEN COEFS, ONLY, N L,N.P, ROOFS OF 2NTN
ORDER POLYNOMIAL, AND THE COEFFICIENTS GENERATED BY THE L,W.P, ROOTS.

POWER OF S COEFFICIEN?

0 0.84655929E 04

2 -0,22416455E 08
4 O.16g91450E 09
6 -0,52179975E 08
8 -0.35095707E 04

%0 -0,09999999E 01

ROOTS FROM EVEN COEFFICIENTS

0,3787315E-03
0.1382508E-00
0.3097846E 01

-0.1756404E 04
-0.1756404E 04

O.
O.
O,

0.7007595E 04
-0.7007595E 04
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ROOTS WITH NEGATIVE REAL PARTS

"0,1946103E-01 -0.

"0.3718209E-00 -0,
-0.1760070E 01 -0.

-0.5228745E 02 -0.6701030E 02
-0.5228745E 02 0,6701030E 02

COEFFICIENTS OF POLYNOMIAL GENERATED eV ROOTS IN LEFT HALF PLANE

POWER Or S COEFFICIENT

REAL IMAGINARY

5 0,09999999E 01 O,

4 0,10672624E 03 -0,

3 0.7450030gE 04 0,15258789E-04
2 0,15614923E 05 °0,10967255E-04
1 0.50289033E 04 -O,lg477440E-04
0 0,92008653E 02 -0,

CONTROLLABILITY MATRIX

O. O, O, O, 0°174600E 02

-0, -0, -0, 0,174600E 02 -O,Sg6656E 02

-0.368406E-00 O, -O,g27604E 01 -0,586656E 02 -0,305412E 05

-0.702633E 01 -0.827604E 01 0,277820E 02 -0,305412E 05 0.205899E 06

0.672588E 03 0,277820E 02 0,144760E 05 0,205899E 06 0,530760E 08

S-MATRICES O_ CLOSED LOOP

INdEx= 4

COLUMNS I TNRU

0.I067E 03 °0.1940E-01 O.IOODE 01 =0,2%%0E-01 -0.

-0. 0.1067E 03 O,ZO00E 01 =0, -0.
0.6930E-01 -0. 0.1067E 03 =0,4740E°00 =0.
O. O. O. 0,1067E 03 O.IO00E 01

0.3649E 04 0.6909E 04 0.3229E 05 =0,7446E 04 0.3220E-01

INCEX= 3

COLUMNS 1 THRU

0.7446E 04 -0.2070E 01

0.6930E-01 0,7450E 04
0.7394E 01 -0.$344E-02
0.3649E 04 0.6909G 04
0.223_E 04 0.1517E 03

0.1067E 03 =0,2725E 01 -0,2110E-01

0.1067E 03 i0,4740E-00 _0.
0.74506 04 =0,5059E 02 =0,4740E'00
0.3229E 05 0,3366E 01 0.3220E'01
0,1160E 05 =0,1562E 05 "0.69306-01

5-45



INCEX s 2

COLUMNS I THOU 5

0.1551E 05 -0.2902E 03

0.7394E 01 0.%561E 05

-0,1214E 04 -0.3275E 04
0.2238_ 04 O.1517E 03
0.4788E 03 -0.5222E 03

0.6763E 04 =0.5056E 02 ,0.4740E-00

0.7450E 04 =0.5059E 02 =0.4740E-00
0.3168E 03 =0.%784E 01 -0.1673E-01
0.1160E 05 =0.7393E 01 =0.6930E-01
0.1517E 03 =0.5029E 04 0.1344E-02

INCEX, 1

COLUMNS _ THRU

0.327_E 04 -0.'3572E 04 -0.2902E 03 0.98%1E O0 0.9196E-02

-0.1214E 04 0.1754E 04 0.3168_ 03 _0.1784E 01 -0.1673E-01
0.3183E-11 -0,9201E 02 -0,4184E-09 _0,%345E-10 0.255_E-12
0.4788E 03 -0.5222E 03 0.1517E 03 0._434E-00 0.15446-02
0.1179E-06 -0,1199E-06 0,26796°05 =0.9201E 02 0.2014E-08

iN£_X = 0

COLUMNS 1 THRU

0o7800E-07 0.3103E=10 0.1553§o07 o.gg19E°$% 0.4_19E-13

0.3183E-%l 0o7795E=07 -0.4184E-09 =0.1345E'10 0.2155E'12
0.7369E-09 0°4017E=09 0.9034E-07 0.5229E-09 =0.3g87E-11
0.11?9Eo06 -0.1199E-06 0.2679E°05 =0.5528E'07 0.2014E=08

-0.2169E-05 0.%579E-04 -0.1051E-03 0.2200E-04 =0.1910E'06

A-TILIIE-TRANSPOSE (ATT USED IN FILTER PROGRAM) (_w-_

-0.322000E-01 -0. 0,693000E-01

-0.194000E-01 -0. -0,

0.100000E 01 O.IO0000E 01 -0,

-0.211000E-01 -0. -0.474000E-00

-0. -0. -0.

-0, 0.364936E 04

-0. 0.690904E 04

-0, 0.322996E 05

-0. -0.744631E 04

O,IO0000E 01 -0.106694E 03

OPTIMAL CLOSED-LOOP ROOTS

REAL IMAGINARy

-0,19461E-05 -0,

-0.37182E-00 -0,

-0._7601E 01 -0,

-0.52287E 02 -0o67010E 02

-0.52287E 02 0.67010E 02

COPPuTED FEEDBACK CONTROL VECTOR (TERMS I TMRU N)

0.20897E 03

0.39571E 03

O.18493E 04

-0.32565E 03

-0.591g4E 01

(%)

_: _o_.__ + _.7, _ • ,_,_._-_._-_._ _
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CLOSED LOOP ROOTS ACHIEVED BY CONTROL VECTOR

-0.19461E-01

-0.37182E-00

-0.[7601E 01

-0,52288E 02

-0,52288E 02

Oi

O,

O,

0,67007E 02

-0,67007E OE

close4 [0op roots _l_o_. qo_&o££
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DESIGN FILTER TO APPROXIMATE CESIREO SYSTEM POLE CCNFIGURATICN

A-TILDE-rR¢_,SPCSE _'ATRIX (_m_ #ror_ C_JT_L?)

-0°0]2200 0.069]C0 -0.

-0.0194C0 -0. -0.

I.CCCOCO -0. -0.

-O.O/LICO -0.4740CC -0.

O. -0. [.COOOQO

G--LIIIL_ (CCNTRCL VECTCR)

-0.

l. COOO00

_0.

~0.

208.969gg9

]95.70q990

1849,3££994

-325.6_CC00

-5.9t8000

_STAR Y_TRIX

SEKSER I -L). t.O00 -0. -0.

SENSER 2 -0. -0. -C. I.CCt;

CCEFFICIEKTS CF CPEK LEEP CFARACTEkISTIC EOUATICN (PqWERS QF S F_tCM 0 TC N)

C.>]b98E O[ -0.12164E 03 O.b6413E 02

ELINV MATRIX

0.17005E 04

]649.359_85

5909.049988

322BD.bq99bl

-7466.5C00C0

-[06.e8899:_

rJ. 33 )22E ')L

( L" Sro_ CNT&LZ_

O.I_Gb_5C;E-CO -O./qPOLqCE-CO 0.9_OqCCOE-I2 0.2347360F-01 O.L26470UL:-O_

-_./!2/(,Q_Ce C[ -0.8276040E O! -O.2£2CtqOE-CO -O.120GqHOE Ot U.2_47360E-OL

-f,._L_406OE-CO -0. -O.[!Z76040E O[ 0.Sd/2120E O0 -O.1209980E Ol

O. -0. -C. U.I?46COOE OZ O.5627L20E O,J

O. -ft. -O. -0. O.I/46OOOE r)Z

O. [()0006 0
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CBSERVA8IL[TY P_T_IX

-C. -0. -0. -0. 0.b93000£-01

C.ICCOCOt Cl -0. -0. -0. O.

-C. -0. O.IOCGOOE CL -0. O.

-C. O.IO0000E Oi O. O. -0.4740006-00

-C. -0. C. O.iOOCOO£ Ol -0.
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FILTER PARAMETERS

- PORT ._ILTER

POLYNOMIAL CO_PPlCIENTS IB= _SCE_I_ING POwENS OF S (0 TO 2 )

NUM_RAIOP HN, i

NO_EHATOH (:(_. 2

0.474_k 07 n.1236F Ob

COMMOt,_ D_-NL, MINATuR

D.t4DSE D_

O,

r
J
L

J
I
i

C_+_)Cs+4]

(s+z)(s+4)

I

I
J
I

i

_p

FILIFR ROOTS

NU_NATOR Nn. i

"rkr.s_._Ic_odCLn _er_tor klo_(

U r_M M[J '_ I]__NI.IMi NA TON

-U,30_2UU¢-O0 b,lQ4485E-O0

-_._?OOE-OO -_.Z_E-O0

-o.2ooono_ o_ -b.

NESULrlI'_ PO_R POSITIONS

-L',3i%_2_E-OU

-U,I/6uOgE UI

b.4b_4_ rJ2

u.a_e_3E _2

-u.sz28aSE (!_

-U.522_48E 02

u.

U,

u.

0.4_b572E _)2 ]

-U.4B%572E ('2 t

0,61['110_F 02

-0,67DllOE 02

arc L_.stabtc, ,n_,cctcs i:_no_t t[qc-_,t_C.r
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FILTEq nARAVETERS

2 - PC_T FILTrR

PCLYNCMI&L C[_FFICIENTS [K _SC(_CIkC _C_I:RS CF 5 IO T_ 2 )

[

I
C.G2_z,E C7 C._3q/E 0,_ 0.I122E 08 _b- I

I
I

I_LMERAT[_ I',C. 2 I
I

0.31431: O,g -0.2794E C_ O. _. I
I
I

C_',_ MCk C 6_,C_ I_,_TCR L

(s+_oo) Cs_-4-oo)

(s÷_oo)(s+_oo)

l

t

I

I
]

0.SCCCk 05 (J.GCOOF 03 O,IOQOE OI

FILTER RCCIS

NUME4AIGt4 %C. 1

-0.505183k-00

-0.3o518_[-no

C.I')IItGE-CC

-C.[SIIL4E-CO

COIV NCN [_E',_CM IN ATCq

-0.2OCCOOE 03

-O.40000OE Q3

-C.

-C,

RESULTING PCLE POSITIONS

-0.1S4610E-01 O.

-O.J?I/81E-O0 O.

-0.176C3_E O[

-0.525566E 02

-0.444l[6E 03

-0.522_42E 02

-Q.b22%q2E 02

O.

°I
O.

O.6?OIOSE 02

-0.670L05£ C2

T_es¢ two polesctr¢ stable Gradnearer

o_S,_rnpt,C,t_IPco?{_-T_OC_[Leo(es,gnprocedure,.
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6. RESULTS OF COMPUTER FLIGHTS

The control system synthesis and the simulated flights were

accomplished for a five-dimensional model based on the rigid-body

motions with perfect sensors and actuator. The equations of motion
;14

for this model are

= -0.0322a - 0.01949 + _ - O. 0211p (6-1)

= 0.0693a - 0.474_ (6.2)

= O. 762a - 1760.5fi - 3.36_ + 17.54 (6-3)

The two quantities, besides control, appearing in the criterion integrand

are drift acceleration

T+T -D N T
z": c o +_ • _':_*

m _+--Om m _:ql x (6-4)

and bending load

L : 1 26o + 4.4_ : q2

.t..f.

• x (6-5)

For the flights, lateral drift was actually computed by integrating

z = V (9 + o - o) (6-6)
w

It will help the interpretation of the results of the simulated flights

to review the design procedure very quickly. The control is of the form

= g • x : gl _ + g2@ + g3_ + g4 p + g5_5 , (6-7)

;l'Numerical values were derived from NASA-supplied documents.
;:_;:"SeeSection 3.
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where the gi are determined using the design programs so as to mini-

mize the criterion integral

zZ+_ +4 2 dt , (6-8)

A

where K and _ are weighting factors chosen by the designer. The fol-

lowing restrictions should be kept in mind: (6-8) is minimum for initial

condition errors in the absence of winds; because of the term _2 (required

for stability) there is always some amount of drift minimization and load

minimization called for, since Q is a linear combination of all the states

while drift and load are linear combinations of states, also. Because of

the latter restriction, _ and _ are not directly related to the minimiza-

tion of drift and load, respectively, in a straightforward manner. Indeed,

the control can be written in the form

_= _'z + aL+ _' (6-9)

so that (6-8) becomes

+ _)z "2 + 2-_'_L + _ + L g + 2(_z" + _L)_' + 4'2 dt , (6-1o)

where _, a, and _b' depend implicitly upon _ and K.

The optimal control design was carried out for a wide range of

values of _ and _. The resulting control systems were "flown" in the

five-dimensional model of (6-1), (6-2), and (6-3) for various conditions,

i.e., no wind and the wind shown in Figure 6-i, linear control (Q = g • x)

and bang-bang control (4 = sgn g • x), small initial offset (_ = 0.1 °,

= 0.5 ° ) and large initial offsets (a = 1 °, _ = 5°). Figures 6-2 through

6-9 are typical of the computer output. The simulations were run on

the IBM 7094 of the Hughes Scientific Computing Department. The

A

'"In Figures 2-9 K1 = K and KZ -- _.
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75 M/$_'C

I0

(t =0 AT MAX O)
Figure 6-1.

I _- t (SECONDS)

20

Typical wind profile.

program was coded in Fortran IV and employed a straightforward

differential equation integration scheme available as a library sub-

routine.

One fact was evident from the computer traces -- all the controllers

exhibited the characteristics of "minimum drift control" in the sense of

Reference i; i.e., '"z goes to zero as soon as the transient oscillation

around the center of gravity dies out. " _:_Infact, z' goes to zero as soon as

the wind velocity becomes constant. "Minimum drift" feedback gains in

the sense of Reference 1 are never obtained, since all the states are fed

back. Another fact is also easily deduced from the computer results--

the drift performance is rather insensitive to _ and _. Figure 6-10

shows drift as a function of these quantities for linear control and small

initial offsets (for the larger initial offsets just multiply by 5). Note

¢\

that drift decreases slightly as K increases, as expected. For the runs

with wind present, the differences in drift performance are not readable

from the output plots; the common value for linear control and small

offsets is 800 meters. It is also interesting that both linear and bang-

bang control resulted in nearly identical drift performance for all the

conditions investigated.

The peak bending load is much more sensitive to parameter and

control changes. Figure 6-11 shows peak load for the cases used for

Figure 6-6. Note that L has a maximum between _ = 0 and _ = 105. It

is obvious from (6-10) that the criterion is more sensitive to a than

for small values of "_; it is not surprisingp then, that the peak load is not

_;_Reference i. E.D. Geissler, "Problems in Attitude Stabilization

of Large Guided Missiles," Aerospace Engineering, Oct. 1960, p. 24.
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a monotonically decreasing function K, but is ultimately so. Since (6-5)

shows that L is largely dependent upon _, the peak load must depend

upon the type of control chosen. For linear control in the absence of

wind the peak load is linearly related to the initial offsets, while the

peak load for bang-bang control is much less sensitive to initial condi-

tions. However, after the initial response transients died out, the

"long-term" (5-i0 seconds) behavior of the bending load was reason-

ably close for both controls. In the presence of wind, the situation is

much more complicated (as Figures 6-2 through 6-9 show). The
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peak load is now a function of initial offset, control, and wind pro-

file. Since the available simulation time was severely limited, there is
insufficient data on which to base any realistic conclusions about the

load behavior in the presence of wind.

The final series of flights consisted of a seven-dimensional model

(including one bending mode) using the five-dimensional control vector
A

discussed above for the case _ = _ = 0, including the effect of the wind.

The equations used were

= -0.0322e- 0.0194@ + @- O. O211p +
w

(6-11)

= 0.0693e- 0.474_ (6-12)

_ = o.v6z_ - 1760.5_ - 3.36_ - o.03sv% + iv.5_ (6-13)

_= 15:2_ -0.0036_ - 0.006_ (6-14)

The performance of booster control system was not much affected by the

inclusion of the bending term; the peak bending load was reduced some-

what, and the drift was unaffected.

6-21



7. DISCUSSION AND SUGGESTIONS

In Section 1 a 26-pole model of a large flexible vehicle was

described. The model presented there can be used for extensions of

the initial synthesis procedures described in Section 5, which were

based on a 5-dimensional model, or for checking the stability and

performance of closed loop systems for which the control law was

derived for a lower dimensional model. It is felt that by adequately

describing the dynamics of the vehicle, more reliable information about

the stability of the actual vehicle may be obtained. In particular, the

problem of blending sensor outputs so as to accurately identify the

"state" of the system is intimately related to the existence of a com-

plete model of the vehicle. This is an area of research which has

recently received attention at Hughes Aircraft Company.

We propose to couple an accurate model of the vehicle with Kalman

filtering and the filtering technique of Hughes Aircraft Company described

in Section 3 to synthesize a system which would be immune to the noise

introduced by the sensors, be insensitive to the higher bending modes

of the vehicle, and minimize a given performance index. Hughes

Aircraft Company has recently obtained results along these lines which

are presently being evaluated.

The linear design procedure described in Section 5 may be

extended to a higher dimensional model with little difficulty_ but even

for the existing procedure there are some areas of investigation which

should be explored. First it should be determined how good the control

law developed for a 5-dimensional model would perform when used for

the 26-pole model. This has already been done for a 7-pole model.

Also the possible improvement of performance gained by going from a

5-dimensional model to a 26-dimensional model should be explored to

see if the added complexity is justified when the disturbance is the worst

wind.

The nonlinear feedback law described in Section 4 seems to yield

a minimax type of response when the system is subjected to an initial

condition. This can be further checked by starting near the origin and
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flooding the state space to determine actually how good the performance
is. It should be noted that the number of products of state variables

increases factorially with the order of the model. It would, therefore,

be worthwhile to investigate the performance of a high order system

subjected to disturbances when the nonlinear control law has been
designed for a low order plant. There is good reason to believe that

the resulting system will be stable since feedback, in general, com-

pensates for ignorance about the actual plant dynamics.
In the area of stability of closed loop system the results of Sec-

tions 3 and 4 indicate that th_ control I..... _ _-^_ _ ..........

asymptotically stable when there is no actuator saturation. For systems

where there is actuator saturation the resulting systems are still stable

in a well-defined, computable neighborhood or the origin. The results

along these lines are presented in Appendices C and E. However, the

stability results derived so far relate only to initial conditions and not

to continuously acting disturbances. In order to determine the actual

behavior of a working system it is necessary to obtain analytical results

which will allow one to say exactly in what region the system is operat-

ing. This requires using the concept of "practical stability" as defined

by Zasalle and Lefschetz to get an accurate assessment of the behavior

of the system for "worst" input disturbances. In the case of linear

systems bounds are easily obtained and, in fact, were presented in

Hughes Aircraft Company's original technical proposal. However, in

the case of nonlinear controlled systems or linearly controlled systems

for which the control law was derived for a lower order model, these

bounds are not easily obtained and further work is necessary to get an

accurate assessment of behavior of the system. This would correspond

to completing the study of the performance index

min llxll

where one takes the maximum overall allowable disturbances.
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fl

J
Thus we conclude that this study has yielded some very useful

control laws for linear models of the vehicle when one considers initial

condition disturbances, but also there should be further study to assess

their usefulness when applied to linear plants acted upon by "worst"

/
disturbances. _'
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APPENDIX A

LINEAR CANONICAL FORMS FOR CONTROLLABLE SYSTEMS

INTRODUCTION

In this paper four different coordinate systems are studied,

namely

l) state variables (x)

Z) phase coordinates (8)

3) Lur'e coordinates (_)

4) generalized Lur'e coordinates (6)

There are six nonsingular linear transformations, namely

_=T@

x = D_ = DT@

= V':'x = V':'D_ = V",-'DTO

that relate the four coordinate systems. In order to pass freely among

these coordinate systems, including the inverse transformations, a

total of twelve matrices must be utilized.

In particular numerical applications wherein the dimension n of

the state space is large, it is desirable to avoid either inversion of

n xn matrices, or complete spectral analyses of (nonsymmetric)

matrices. The present analysis achieves this by explicit presentation

in "closed form" of rational expressions for the elements of all twelve

matrices.

It has been shown by Zur'e []], Letov [2], and many others,

that use of Zur'e coordinates facilitates explicit construction of

Liapunov functions [3], hence facilitates study of stability of equilibri -

um in dynamical systems.

More recently it has been shown by Bass, Lewis, and Mendelson

[4], [5], by Wonham and Johnson [6], [7], [8], by Kalman [9 ], and by

Bass and Gura []0] that use of phase coordinates facilitates the appli-

cation of frequency-domain concepts to various problems of system

stabilization and optimization stated in time-domain concepts.
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In this paper a system of generalized Lur'e coordinates is

defined. Unlike the Lur'e coordinates, these variables are well-

defined regardless of whether or not the system's "open-loop poles"

(eigenvalues, characteristic roots) are distinct. Although many

realistic engineering problems do not have multiple roots, many highly

illuminating examples of modern control theory can be derived readily

when multiple roots are permitted. Therefore the complete generality

of applicability of this last-mentioned coordinate system is important

for both exposition and research on advanced control problems.

The system to be studied is of the type

= Ax + a4o

where

x=Ax

governs the evolution in time of the uncontrolled system, where "a"

is the actuator vector, and where the scalar 4o = 4o(X) denotes the

feedback control law. (In this paper the functional nature of 4o is

irrelevant, hence unspecified. )

The characteristic polynomial of the uncontrolled system is

defined by

n

A(S) = det(sI - A) = a.s
1

i=O

which defines the coefficients ao' a l''''' an-l' an = I.

matrices S I, SZ,..., Sn are defined either by

Similarly,

S.

1

n

c_.A j -iX,
j=i

(i= 1, Z,...,n),
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or by means of the resolvent equation

i=l

S.

1

In numerical practice, use of the preceding definitions for the

e. and S. is quite impossible for large values of n, since it would
1 1

require n! multiplications. However, an efficient recursive algorithm

4
stated below permits their computation in about n multiplications.

The given system is called controllable [9] if the system of n

simultaneous linear equations

a-b = 0 , Aa.b = 0 , --. , AJ-la.b = 0 ,

A n -2 A n - 1a.b = 0 , a.b = 1 ,

has a unique vector b # 0 for its solution. The vector b can be com-

puted by Gaussian elimination. In general, computing b represents

(I/n) t-'-h of the arithmetic labor required to invert an n X n matrix.

The vector b is important for several reasons. In particular,

it is the normal vector at x = 0 to the time-optimal switching surface

of the given control problem. In fact, it can be proved [Ii], [IZ] that

the Lime-optimal regulator law has the form

qJo = sgn[b'x + Po(X)] ,

where {p(x)/ llx II} _ 0 as

positive constants _o' Tlo

II x II "_ O; in fact for some
1

such that

> 0 there are

l+r I
- , > o , (llx III%(x)1< % IIxII o 1)

Furthermore, if the phase variable @i is defined by

0 ---- b*x

l
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then it will be shown below that the given system is equivalent to the
scalar system of nt-h order defined by

Passage from the phase variables @i' @i'''''

dn-l@ /dr n-1 to the state variables x l, Xz,...1

result

dj - dt j - 1 . . .
1@ 1 , ,

, x is facilitated by the
n

lo,1_-_ d i-

/ -Ix= Z -1 1
i= 1 dti

to be proved below.

Next, assume distinct roots,

numbers k I, k2,..., kn satisfy

io e, assume that the complex

z_(ki) --o , a'(ki) # o , (i= I,z,... ,n)

Define vectors v i as suitably normalized eigenvectors ofA _:',namely,

• i i
A_':_vI = k.v , v • a = i , (i = I, 2,...,n)

1

Then the Lur'e coordinates of x are given by

i

_i = v .x , (i = i, 2,''',n) ;

it is easy to see that these variables satisfy the system

_i = kiwi + _o ' (i = 1, 2,''',n) .
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Furthermore, it will be proved that return from the variables _i
the x. is provided by the transformation

3_

n

x = I _i ui '

i=l

to

i
where the vectors u

A, namely

are defined as suitably normalized eigenvectors of

• = " i u z . = (I i "'" i)*Au3_ k.u I u + + " " + u n
1

i viThe preceding definitions of the u and are adequate in principle but
i

in practice are inconvenient. However, the correctly normalized u
i

and v can be computed efficiently by the following closed form

expr e s sions :

(i = I, 2,...,n)

n

vi = I (ki)J- 1S?bJ , (i = i, X,''',n) .

i= 1

A complete summary of results, in systematic tabular form,

are given at the end of this appendix. All of these formulas are used

in the authors' theory of integrals and isochrones [l I] which allows

explicit (local) solution in closed ("algebroid") form of both the time-

optimal regulator problem [IZ] and the bang-bang control problem

with quadratic performance index [13].
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NATIONAL CONVEN TIONS

a°

b.

C°

d.

e,

f°

g.

ALGEBRAIC PRELIMINARIES

In general, the solution of the system of differential equations

_= Ax + a_o

At
involves the _ransition matrix e , whose Laplace transform is the

-I
resolvent matrix (sI - A) where I is the identity matrix and s is a

scalar. It can be shown [4, 14] that this matrix is given by

Matrices are upper case letters.

Vectors are lower case unsubscripted or superscripted

letters.

Scalars are subscripted lower case letters.

Exceptions to these rules are i,j,k,l, v,n which are used

as summation indices or scalars; s which is a complex

scalar; A(s) which is a polynomial in s: and t which denotp_

time.

Asterisks used as superscripts (_:")denote matrix

transposition.

.th i
The 1 column of the identity matrix is represented by e .

The symbol _- denotes equality by definition.

(1)

-I r(s) (z)
(sT - A) - _(s)

where

A(s) = det(sl - A) =

n n

I sJ I i-IF(s) = s S.
] ' i

j:o i:l

(3)
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a

and the S 1 SZ,... S and the

by the recursion relations

• " " _ Of

n
are effectively computable

=I , S =I
n n

(4a)

I

an__j = - jTtr(ASn-j+l) , (j = 1,2,---,n)
(4b)

S = _ .I + AS
n-j n-j n-j+l '

(j= 1,Z,'",nl

The matrices S. can be shown [4] to satisfy
1

(4c)

n

S = _ a.A i-n+j
n-j 1

i=n-j

(j = 1,2,-'' ,n) (4d)

The theoretical definitions (3) and (4d) cannot be used to compute the _.
1

and S. for large n, as they invoive n! muItiplications. However, the
z 4

algorithm (4b-c) requires only about n multiplications and has an

=0intrinsic self-checking feature in that (by Cayley-Hamilton) S o

The controllability criterion of Kalman [9] is fundamental to the

present analysis and will be assumed henceforth. For the system (1) it

can be expressed in determinantal form as

det D _ 0 (5a)

where

D = (a, Aa,"', An- l a). (5b)

Theorem i

If the matrix L is defined implicitly by

L -1 _ (Sla, Sza, .-.,Sna)* (6)

A-7



then

L =-[b, A'b, (A*)Zb, "'" , (A*)n-lbl (7)

where the vector b is given by the solution (e. g.,by Gaussian elimination)

of the nonsingular system of linear equations

n

D*b = e (8)

Proof. If the above hypothesis is to be identically true, it must be

shown that

• . Sna)::=]-I i i-l[(Sla, Sza, • , e = (A*) b , (i = I, 2,.-.,n) (9a)

or, equivalently, that

i .,.

e : (Sla, Sza, • •• ,Sna)"'(A*)i-lb , (i = I, Z," • • ,n) (9b)

is valid. In particular, the rows of (9b) can be written as

n

a*S'?(A::")i-lb3 = a* _, _v(A*)w-J+i-lb = 5ij

v=j

(i,j - l, 2,...,n) (I0)

Now replace summation over v by summation over k where k = v+i-j,

and obtain

n+i-j

a::" _ ek+j_i(A*)k-lb = 6ij

k= i

(ll)

as the relationship to be established.

Consider first the case for which j >_i.

Note that (8) can be written explicitly as

This implies that I < k _<n.

6kn = a::"(A::")k-lb , (k = I, 2, • • ",n) (12)
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where 8kn is the Kronecker delta. With this, the left side of (ll)
n-j+i

becomes _'k=l _k+j-i6kn The summand is zero except when k = n

(which requires i = j) in which case the sum takes the value o_ = i.
n

Hence (Ii) is true for j >_i.

Returning to (ii) when j < i, write the left side of that equation as

n n-j+i

a* _k+j_i(A*)k-lb + a* _,

k= i k= n+ 1

ak+ J _ i(A. ) k- 1 b (1 3)

Now, by the same argument used above, the first summation in (13)

yields the vaiue _n+i-i" On replacing kby m=k+j-i, the second sum

becomes

n n+j-i

a*A i-j-1 _. re(A*) mb = -a*Ai-J - 1 C_m(A*) mb , (1 4)

m=n+l+j-i m=0

where the latter result was obtained by use of the Cayley-Hamilton

Theorem. (A matrix satisfies its own characteristic equation.) Now since

j < i, (12) can be used (with m instead of k) and the second sum equals

n+j-i n+j-i

-_ e a*(A*) m+i-j-t b -_m m6m+i-j

m=0 m=0
,n

(15)

This has the value zero except when m+ i - j = n in which case it becomes

-_n+j-i" Combining this result with that following (13), it is seen that

for j < i the left side of (ll) is zero. Thus relationship (ll) has been

proven and theorem must be valid.
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Theorem Z

A more concise expression for the inverse of L is

where

T = T # A

(L- i)_:--= DT

_I _Z _ In-I

_2 _3 i 0

_n- I i 0 0

I 0 0 0

(_6)

(17)

Proof. By inspection, the it-h column of T can be written as

n

ti = I a" eJ-i+l
J

j=i

(I8)

Now by definition

DT = (Dt 1 Dt2, "-" Dt n) (I 9)

where

But by (4),

n n

Dt i I_.D eJ-i+l _o%(A) j-i_- = a

]
j=i j=i

the definition of Si, Dt 1= S.a.l Then applying (6) yields

(20)

as desired.

DT = (L-I) ':'= (S la,S2a ,. • -, Sna)
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Theorem 3

A pair of explicit expressions for the inverse of D is

D-I_ A- (a, Aa,-.-,An-la)-i _ TL':'

* Snb)*D -I _ (Slb ,

(22a)

(22b)

Proof. Consider the matrix

LT* = LT = (Lt I, Lt 2,

By (18) and the definition of L,

, Lt n) (23)

n

Lti = l[b'A*b''''(-A*) n-l

j=i

b]_. ej-i+l
3

n

I o_j(A':") j - ib

j=i

(i = 1, 2,''',n)

Applying (4d) it is seen that Lt I = S'}'b. Thus,
I

(24)

Now by Theorem 2, D

by (25)

LT*=(Si'b,S'jb,..-,Snb)

-I : [(L-I).T-I]-I : TL*, o r L T':"= (D - 1),:,

D -1 = (S'_b,S;zb,'" • ,Snb)*

(25)

so that

(26)

as required.
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Theorem 4

An explicit expression for the inverse of T is

-I
T =

"0 0 0 1

o o i

(Z7)

where the _'s are given by the following recursion formula

Po = I , (28a)

v-I

_v = -_ _j+n-v_j '

j=0

(v = 1, Z, • '' ,n-l) (ZSb)

Proof. The proof of this theorem consists of two parts. The first

part introduces the appropriate set of quantities (_iI which obey (28). The

second part shows that T -I is given by the matrix displayed in (27).

Part A. Define the quantities _j(j= I, 2,.-.) by the Laurent series

A(si - sn+J
j=0

(Isl > max Isi[) (Z9)

where the s. are the roots of A(s). Then
1

I = o_.s _js -(n+j (30)

_i=O i "'j=O
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Replace j by use of the definition v = j + n-i, obtaining

n co

v= s (31)1 cvi_i+v -n

i=0 v=n-i

Now interchange the order of summation by observing that 0 _ n - i _ rico

and 0 _ i -_n imply that 0 _< v __ 00 and max(n- v,0) _< i_ n. Thus

i l i _i_i+v-n
v=0 i=max(n-v, 0)

-V
s (32)

Note that the ver.y first term on the right side of (32) is the only constant

in the series. Thus for (3Z) to be valid for all [s[ >_ max [si[ that term

must be equal to unity and the remaining terms must all be zero. Then

_n_ ° = 1 (33a)

n

_i_i+v_n

i=n- v

=0 (v= 1,2,.--,n) (33b)

n

_ _i_i+v_n =

i=O

_ (v = n+l, n+2, n+3, " • •) (33c)

or equivalently, _o = I,

n-1

_v = - _ °_i_i+v

i=n-v

where j= i+v- n, and,

_k+n = -

where k : v-n.

-n

v-i

_, _j+n-v _j
j=0

simila rly,

k+n- 1

cej_k_ j ,

j=k

A-13
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(27).

-I
Part B. It will be shown that TT = I, where T

.th
]By inspection,the j-- column of T -I is" given by

-I
is defined by

Then, using (18),

is

j-l

y n+k-j+lTJ = _k e

k=0

the i-jt-h element of TT -I = T*T -I = (T*T I,''"

(35)

_ j-i

ti'TJ = _ Y _k 6_-i+l,n+k-j+l (36)

_:i k:0

The non-zero terms of this expression occur only whenf- i+ i = n+k- j+ I

or when_= n+k-j+i. However, i<£ in and 0 <_ k < j-I must also be

satisfied. This implies that i _ n+k-j+i _<n or that 0 _< k -<j-i. Then

(36) becomes

j-i

t i.r j = y an+k_j+i_ k (37)

k=0

For j=i this reduces to unity. For j _ i let v = j- i and, using (34a),

obtain

v

t i . T j = an+k-v_k = -_v + _v = 0

k=0

(38)

and the theorem is proven.

PHASE VARIABLES (0)

Taking the scalar product of (A*)k-lb, (k = I, 2,''',n),

system (I) results in

[ dx] k-1 b k-1 b(A*)k-lb._- = (A*) .Ax + (A*) .a_o.

w ith the

(39)
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Applying (12) gives

[ (A_:')k- lb" "_-'_] = (A_:")kb " x + 6kn _o" (40)

Now define a new variable

e -- b.x

1 (41)

where b satisfies (8). Then for k= I, (40) becomes

b'dX- dOl = A";b'x
dt dt (42)

Differentiating this expression with respect to time and using (40) for

k = 2 gives

d20

i A* b •dx 2b--2- = _-= (£;'_) "×
dt

(43)

Continuing in this manner obtain

di- i@
I

dt I- i

_ (A #)i- lb. x (i = i, 2, "'', n) (44a)

and

dnOl (A,,;)nb. + %.-_ X

dt n
(44b)

Then

n dj0
l

_j dt---Y -

j=0

- [_o I + _IA_:_ + ... + an(Ag')n]b-x +%. (45)
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Now by the Cayley-Hamilton Theorem A(_a_'_)= 0, whence

n dj@
1

at--f
j=0

- A(d/dt)@l = ¢o
(46)

Upon defining the state variables 01,02, "''' 0n by

d i- i@

O. - 1 (i = 1, 2,''" n), (47)
I _-! '

dt

th
the n-- order scalar differential equation (46) can be expressed as the

first order matrix system

= CO + en9 o (48a)

where

l 0
1

0 2

0 = •

0
n

C __

0 i 0 0 0

0 0 i 0 0

• • • • •

0 0 • • 0 i

-a I -a 2 • . -an_ 2 -a n_

(48b)

To find the transformation matrix between the x and the 0 coordi-

nates, note that Equation (44a) can be expressed as

O. = (A*')i- 1b ,• x (i = 1, 2, .." n) , (49a)
1
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or

o = [b, d" b, • .-, (Z }n- lb] x -- SZ"× (49b)

Note that applying this directly to (i) and comparing the result with (48)

shows that

-.:.-

C = LA(L"" )- 1 (50)

By Theorems 1 and 2 the inverse of (495) can be established directly.

Thus

n

x =-(Z_:_)-I@ =-(Sla ,S2a, ...,Sna) @ = _ @iSi a

i= l

or

x = DT@

"GENERALIZED" LUR'E VARIABLES (qb)

(The reason for this name will become clear in a later section.)

Relations Between x and qb

Let

Then (i) becomes

_ A D-I_. X

_b = (D- 1AD)qb + D- laqj

(51a)

(5Z)

(53)
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Consider now the matrix product

0

= (a, Aa, "" ",A n-la)DC

0 0

1 0 0

0 0

n-1

I _iAia)
i=0

= (Aa, A2a, "'',

0 I 0

0 -s 0

-_I

-(_2

n-1

(54)

Applying the Cayley-I_Iamilton Theorem,

Ana whence

DC#: AD

the last column of (54) becomes

(55a)

or

D- IAD = C ':_ (55b)

Note also that, by Theorem 3,

D- 1 (S-_b S:2b Snb)'_ (56a)

or, using Equation (i0),

-l
D a --

a .Slb"

a •S2b

a-S b
n

A-18
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Thus (53) can be expressed as

1
$ = C_::_b+ e L_O (57)

The forward and reverse transformation relations can be expressed

explicitly as follows. By (52) and Theorem 3,

%: D -I L_'_:x ::lb,S_,_b, ,Snb) _:_x= T =(S _ _ "'" x, (58a)

or

.i.

_>i= (S_'b).x , (i= l,Z,'.-,n) (58b)

Also

n

x = D_ = (a, Aa, . _An-i _ _iAi-i• • , a)(_ -- a

i= 1

Relations Between @ and_

Previously [(58a) and (51b)] it has been established that

(59)

Consequently,

In particular, using (18)

= D-ix , x = DT@

: T@

(60)

(61)

= (t 1, tz, • '' ,tn)o =

n n n

• ej- i+ i@

i:i i:l j:i

(6Z)
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J

and s 0

n n

_v = _b'eV = E Ec_.O.6 (v = 1,2,''" n) (63)3 i v,j-i+l '

i=l j=i

Non-zero terms occur in (63) only when v- j-i+ l or when j= v+i- i.

Combining this with the constraints l < i < n and i < j -<n, j can be

replaced by v+i- I only if l < i < n - w + i. Then

n-v+l

_v = E _v+i- 19i

i=l

(64)

whence, setting _ : v + i - i

n

_Ov= E e20e-v+ l ' (v = 1, 2, " " " , n) , (65a)

_n=@l (65b)

The inverse transformation can be established in a similar

manner. Employing (35),

n n i-I

0v T-lqb ev= • = ETiqbi v.e = E E kqb n+k-i+lv_ i e .e

i= i i= I k= 0

n i-i

E E _3kqSi6v,n+k_i+l

i=l k=O

(66)

This expression can be simplified to

6) V

n

E
i=n-v+ i

_v-n+i-l_i (67)
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by considerations similar to those used after (63). Finally, if summation

over i is replaced by summation over _--v -n+i- i, there results

v-1

0v = Z _£_Sf+n-v+l , (v = i, Z, "'', n) , (68a)

_=0

@ 1 = _n (68b)

LUR'E COORDINATES (6)

Relations Between _ and q5

By inspection of Equations (54) and (57),

equivalent to

$1 = -_oCn + 4o '

$2 = ¢1- C_lCn '

the system (1) is precisely

(69a)

(69b)

Sj= _j-l- _j-l_n ' (J= z,3,-.',n).
(69c)

Now consider the _ coordinates for a system with distinct complex
.th i 1

eigenvalues k i, (i= l, 2, .'" n) Multiply the 3-- equation in (69) by k_." 1

and sum to obtain

n n-i n-i

j=l j =I j=0

(i = 1, z,'--,n) (70)

Now since

A(x i) = o

n-1

I_ _ .xJ.
3 _

j--O

=o_ k n
n
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and (70) reduces to

n n

j--1 j--;

(i = i, 2,''',n) (71)

Define

th
as the 1--

n

!-i¢A k
ti = _ J

j=l

component of an n-vector _. Then (71) becomes

_i : kiwi + 9o ' (i : i, Z,''',n)

(7 2)

(73a)

or, in vector form,

_:Ag +u°_ ° (73b)

where

I 2 "'',k en) , u° = (i, i,''', I)
A= (kle ,kze , n

(73c)

The transformation (72) between _ and _ can be expressed in

matrix form by the equation

1 2
where Z : (z , z ,

-- Z;:*$

•.., z n) and where

1

k i

2
k.

1

n-1

ki

n

= E (ki)k-1 ke

k=l

A-ZZ

(i = i, Z, " " •, n)

(74)

(75)



To find (Z_':')-I consider the following. The identity

= iCzi k.z , (i = i, Z,.'.,n) (76)
1

can be verified by inspection of (48b). Now by (55b), Theorem 3, and

(50),

He nc e

T-Ic*T = T-ID-IADT = L*A(L-I)* = C. (77)

- ' : i (78)T iC*Tzi k.z
1

or

• °

C':'_Tzi = k. Tz I . (79)
1

If the ki, (i= I, 2, "'', n), are distinct, then At(ki) = [d(A(s))/ds]ki _ 0

and so

Tz i Tz i

C* A,(ki) - k i At(ki) .

Now define the vectors

i
w = Tzi/At(k i)

Then from (80),

C_':;W 1 _- _k.W 1 ,

1

, (i : 1, 2, " "', n) .

(i = I, 2, ''', n).

Using (76) and (8 i) it is clear that

(80)

(81a)

(8 ib)

"= iw j • Cz i k w j • z
1

(i,j : I, Z,''',n) (8 Za)

and

i . .

z "C*w 3 : k.z i.w j
3

(i,j: i,z,.-.,n) (8 Zb)
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Hence

1 " k i wjk.(z i w j) - j(z " )
(83)

which implies that

i wjz • =0 , i/j. (84)

For i = j, note that

i i i.
Z "'vV -- Z

Tz 1
(85)

By (75) and (18)

zi •T zi =

n n n

iz i tk )k-i zi _-k+l
S(ki)k- • = S (ki _ -e

k= i k= 1 _ =k

(86)

Hence

n (ki)km 1 n n n _ (ki)_ -1

z "w = A' (k.) i = A' (ki)
k=l 1 _=k k=l _=k

(87)

To reverse the order of summation in the last expression note that

1 _<k_< _ _<n implies 1 _< _ < n and 1 _< k _<_. Thus (87) becomes,

for (i -- i, Z,''',n) ,

n _ e_ ( ki)_ - 1 n )_ - 1
i i S S - S _(ki = i
z "w : A,(X.) Z_'(x.)

_=i k=l I _=i i

Combining (84) and (88),
i i

there results w .z = 5.. or equivalently
1j

(w 1 Z . n , 1 Z z n,w ,'" ,w ) (z ,z ,'", )= I .

(88)

(89)
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If w _ (wl z,w ,''',wn), then (89) becomes

w = (z":;}-i (90)

Hence (74) implies

¢:W_ {91)

To express this relationship more explicitly note that, as in (86),

n 1%

¢:w_ : w _i: a'(h i)
i=l i=l

n n (ki)k-i n f-k+l

I I &--_(k; I_'_ e _i

i= i k= 1 I _ =k

(9Z)

or

n n (hi}k- 1 n

CJ A'(X.) 6J'f-k+l
i=l k=l _ _=k

The summations are trivial except when f = j + k - 1. Gombining this

with the constraints k-< f _< n, 1 _< k_< n, (93) reduces to

n n-j+l (hi)k-1

:_ I _ _i (94)
¢] A'{xi) j+k-1 '

i:l k=l

or, setting v : j +k- i,

Cj n /__=_j(hi)_-j:I2
i= 1 1

(j: i,z,'",n) (95}
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Relations Between _ and {3

By (91) and (61) it is obvious that

e = T-Iw_ (96)

In particular, from (92)

i zi n i (ki)k-i

4-1 , 4-I 1.- I i

(97)

or

n (_iiJ-1
e= _ _i '
J A_(_..)

i= I I

(j= 1,2,"',n) {98)

Similarly, the inverse transformation is easily established from (74)

and (61) to be

: Z'T@ . {99)

Hence, proceeding as usual,

n

gi : _ zi'tjej =

j=l

n n

y 7 ok  zi
j:l k=j

k-j+1
"e

j=l k=j
ej, (i = 1,2,''',n) . (lOO)
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Relations Between _ and x

The basic relationship between _ and x can be found immediately

by applying (58b) to (72). Thus

n

_i = _ k!- 1S!'b " x (101)
1 j

j=l

v I 2Now define V _ ( ,v , •" " ,vn), where

Then

i
v

n

= _ k4- 1S".:'b
1 j

j=l

i/-

_o _ V I X

(i = i, Z,''-,n}

(i = i, 2,'-',n)

(lOZ)

(103a)

or

Alternatively,

= V$'x

combining (58a) and (74) gives, by Theorem 3,

(103b)

= Z;:"T L ;:=x , (1o4)

so that

V _'= Z_TL _' (105)

must be valid. By Theorem 2 and (90)

(V':") -1 = (L'a)-IT-I(z":') -1 = DW (106)
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b

For convenience define

u_( i zU ,U ,
n

,u )=DW

where, as in (92),

i
u

n j-1

• _ (_i)= Dw 1 = ---.

j=i z_'(x" )1

n . n (×i)j- i

k=j j=l 1

S.a
1

(lO7)

Then

x = DW_ =u_=

n

E iu_ i

i=l

(108)

Extensions and Generalizations

The identity

_I n

E i_iE ._j_ia(q)-a(_) = (q-P) q a (i09)
i=l j=i 3

can easily be verified by equating coefficients of like powers of I] and

where these quantities obey the commutative and distributive laws of

algebra. With no loss of generality, D can be identified with si and

with the matrix A. Then

n n

E i_l7 .jl_(s)I-_(A) = (sI-A) s a (II0)

i=i j=i 3

and, by the Cayley-Hamilton Theorem and the definition of F(s),

A(s)I = (sI-A)F(s) (ill)

A-Z8



Indeed, (Z) can be found directly from this relationship whenever
-i

(sI-A) exists. By multiplying (111) on the right by the vector a it is
also clear that

A(s)a = sF(s)a-AF(s)a (112)

Before proceeding, define the vector u(s) by

u(s)A r(s)a (113)
re(s)

where

i(s) =
f_(s) for A(s) ¢ 0

A'(ki) for A(s) =A(X i) =0 and k. _ k. ,
1 j

(i,j: I, 2,...,n) .

Explicitly,

u(s)=

n n n k

klj sJ-i _kAk-Ja= _ _ sJ-i _kAk-Ja .I _(s) k=l j=l _(s)
j=l ="

Now let _ = k - j + 1 and replace j to obtain

(114)

n k

u(s) = ak s____ A _ -1
k=l _= _(s) a (115)

Taking the scalar product of u(s) with the vector b and applying (i 2) it is

clear that

n k k-_

u(s).b = I _ _k s---- 1 (116)
k=l _=i _(s) 6_n - _(s)
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Returning to (I12), note that u(s) satisfies

A(s)a + A_(s) = s_(s) , re(s) _ 0 (l17al

whe re

_(s) _ _(s)u(s) = r (s)a (i 17b)

and so, dividing by A l(ki) and setting s = ki, there results

A,,Ixi) - k "-'_ _ (k ' 0.... . i_,, iI , _ i! = , xi4 xj(1,j = 1,z,-..,nl
(llVc)

u(X i) • b - --
A' (k i)

(l17d)

In the latter case, the u(k i) reduce exactly to the u i defined in (107).

Thus the columns of U are merely the eigenvectors of A, normalized

according to (l17d). Consider (I09) again with i] as sl and A* as D.

As before, it can be shown that

Z_(s)l= st* (s) - A* F(s) (ii 8a)

or

A(s)b + A* I'* (s)b = sF* (s) (i18b)

Define

v(s) =_r* (s)b (i19a)

or, equivalently,

n

v(s) = S sJ-is:"b

j=l 3

( 1 19b)
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Proceeding in a manner analogous to that followed in Equations (114) -

(i16), it is clear that

v(s)•a = i (1 zo)

Also, by (l18b)

is always satisfied.

becomes

A(s)b + A"_;v(s) = sv(s)

When ZX(s) = A(ki ) = O, (i = 1, Z,--. ,n),

_v(× i) = × iv(), i)

(lzl)

(lZl)

, (i= 1,2,...,n) , (lZZa)

v(Xi) • a : I
(i= l,Z,---,n) (1 ZZb)

By comparing (l19b) and (122) with (I02), it is obvious that v(k i) is

i
identical to v , (i= 1,2,..-,n), and that these vectors are the eigen-

vectors of A ;:=normalized according to (12Zb).

Note that (103a) can now be generalized, using (l19b) and (58b),
to

£o(S)= v(s) •x =

n

1

i=i

(1 23)

Then, taking the scalar product of v(s) with the system (I) and applying

(120) and (I21) it is found that

v(s) •_ = v(s) • (Ax) + v(s) • a_o

= x':"A*v(s)+ qJo
(1 24)

= x'::(sv(s) - &(s)b) + _b°
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Now using (123) and (49a5, the above becomes

(sl: (s5- A(s)el+ *o ' el =b'x=_ n (1255

This can be considered a generalization of the Lur'

In fact, when the eigenvalues of A are distinct,

e canonical form.

_i =_o (ki) , (i : I, Z,.-.,n) , (126)

and, setting s = k. in (125), the Lur'e form (7%a 5 is recovered. On thc
!

other hand, whether or not the k. are distinct, the identity (125), which
1

in form is highly reminiscent of the Lur'e form, can be regarded as

the collection of n differential equations obtained by equating like powers

of s on the right and left hand sides. However, on inserting (1Z3) into

(125) and comparing coefficients, the canonical form (69) (or, equiva-

lently (57)5 is recovered immediately. It is for this reason that the

form (575 which is valid whether or not the k. are distinct, was called
' 1

the "Generalized Lur'e Canonical Form. "

In a subsequent paper [ll] , an explicit, analytic, non-singular,

nonlinear transformation

0- = g(*) = g(TL*x5 , (127)

will be defined which transforms the Generalized Lur'e Form (57), for

constant _o' into the simplest possible canonical form, nameIy

_- = _b° e n (1285

The use of (57) in the form (125), which is valid whether or not the k. 1

are distinct, is the key to a very direct proof of the important result

28).
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SUMMAR Y

Ao Major Definitions and Identities

For the system :k = Ax + a%bo, in general:

-i r(s)
(sI - A)

a(s)

n-l
A(s) = det(sI - A) = sn + a s

n-]
_- , ° °

r(s) =

n

si- isi

i=l

I"I

= _.A j-i (i = 0, 1,''-,n) ,S.
1 __ j '

j=i

D = (a, Aa, • • • , A n- la) , det D # 0

n

L = (b, A'b, • • •, (A*) n- ib) ,

L -1 = (Sla, Sza,...,Sna)*

(L-I)* = DT ,

- > s;ulD 1 . . .-:.-: TL':: = (S' , , • ,

n

T = (tl, tZ,-..,t n) , t i =

j=i

o

ej -i+ 1o_.

J

=0 ,

S =0
o

(i= 1, 2,''" ,n),

T -i (T 1 2 ) ; Ti=---- T ,'." T n

i-i

j=O

en+J -i+2

(i= l, Z," " , n),
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v-i

_v = I aJ+n-v_J '

j=O

n 1C= -o' e , e
o

(V = l,Z,.'',n) ,

n j-1
01 e ,''', e
I

j-I

n n-I
e ,''', e - _n-I en) '

L*A(L*)-I : C ,

D-IAD = C::' •

For n roots k. of A(s) : 0 distinct:
i

i Z n),Z =(z ,z ,.'',z

n

z = 1
i y (ki)k-

k= 1

k
e

W : (w i Z w n
i

w = TzX/At(k i)

n (ki)J-1 n

j:l k=j

k-j+1
e

w : (z*) -1

i Z v nV= (v ,v ,'", ) ,

n

i S (ki)J-1S;!:b 'v = j

j=l

U : (uI Z n_U _ *'" _U )

(ki)J: i
L1i Dw i Sja: : _ m'(×.)

j=l 1

u (v*)- 1 D;:' V = Z ,

• i
Au I = k.u ui .b = 1/A'(k i) ,

(i= 1, Z,''',n) ,
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A*v i = h.v i
1

i
v .a= 1

b

n

VU*b = _ vi(ui);:"b

i=l

(i= 1,2,''',n) ,

"i}
i= 1 _ vi

B. Coordinate Transformations in Vector-Matrix Form

x e _ (_'i¢ xj)

x = x 0 = L*x ¢ = TL;:"x _ : V*x

x = DT0 0 = O _ : TO _ = Z'T0

x : D_b O = T-l¢ _ = qb _ = Z*_

¢ = wE

x

¢

(k i _/ hj)
x = DW_ 0 = T-1W_

C. Coordinate Transformations in Vector-Scalar Form

x o ¢

X

¢

X. = X,
1 1

n

x : _, OiSia

i=l

n

x _ . _iAi - 1- a

i=l

n

x = _i u
i= 1

Oi= (A#)i- lb • x

O. -- O.
1 1

i-1

Oi = _. _Sj#j+n-i+l

j=O

j= 1 A' (kj)

n

Y
j=l

_bi =

= (S_ b) • x

rl

_ ajOj-i+l

j=i

1 1

v=i a'(×j) ]

_i =

i

_i = v .x

n

XJ °k'ko,
j--1 k=j

n

j=l

_i = _i
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D. Canonical Forms in Vector-Matrix Notation

= Ax + a_b ° ,

n

6=Ce+e 40 ,

1
qb = C;"d_ + e 4o ,

i+ Z+(U0 = e e • ••+ en)

E. Canonical Forms in Vector-Scalar Notation

A(d/dt)@l = 40 ' @1

_o(s) = S_o(S)+ 4o /X(s) _n ,

n

_, i-1Co(S)= s
i=l

_. = xi_ i + 4o , _i = _o(Xi)1

dpi ;

for k. all distinct, (i : I, Z, "-',n)
1
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APPENDIX B
A NONLINEAR CANONICAL FORM FOR CONTROLLABLE

BANG-BANG SYSTEMS
SUMMARY

Consider the state-vector control system _ -- Ax + a_ , c = ±l,

where the pair (A, a) satisfies the condition of controllability. It is

known from general existence therorerns [2], [3] that there exists near

x = 0, a nonlinear non-singular coordinate transformation 0- = p(x,_ )

such that the given system is equivalent to the simplest possible system,
n n *

_r = e _ , e = (0, O, " "', O, i) , whose state-space trajectories are

parallel straight lines. Here the function p(x,_ ), and its inverse

h(_,_), where 0--- p[h(_, _ ), _ ], are defined explicitly by closed-form

expressions involving only rational functions and the elementary trans-

cendental functions. Various problems of stabilization and optimization

can be solved in the 0_-coordinates and the answers then applied to the

original system in x-coordinates. In many cases [8], [9] it is possible

to define scalar functions _(x) and _b(0-)such that the desired control law

is given in the form _ = sgn(_[p(x,_)]), E = sgn[_(x)] which is readily

mechanizable by means of the explicit representation for p(x, t)

INTRODUCTION

In a previous paper [l] several linear coordinate transformations

were defined such that useful canonical forms of the system differen-

tial equations can be easily obtained.

Here a nonlinear coordinate transformation is defined which

changes any controllable linear bang-bang system into the simplest

possible system, namely one whose state-space phase portrait consists

of parallel straight lines. Evolution of the system in time then corre-

sponds to uniform rectilinear motion.

The theory of integrals and isochrones [2], [3] will be reviewed

in a general setting. Then for controllable linear systems a complete

set of integrals and isochrones will be given by means of contour inte-

grals in the complex s-plane [Equation (40)]. Alternate expressions

suitable for use in computer-algorithms will be derived using Lur'e

coordinates [Equation (45)], generalized Lur'e coordinates [Equations

(66) and (67)], and phase coordinates [Equation (84)]. Because of the

usefulness of these integrals and isochrones in designing and simulating
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optimal control systems, the algebraic and analytic details of their

construction will be presented in full. It is assumed that the reader

is somewhat familiar with the results of [l].

NOTATIONAL CONVENTIONS

a. Matrices are upper case Roman letters.

b. Vectors are lower case unsubscripted or superscripted
Roman letters.

c. Scalars are Greek letters and all mlh._criptod !owe_ _o
letters.

d. Exceptions to these rules are as follows:

i) i, j, k, i, v, m, n are used as summation indices or
scalars.

2) @, _, _, 0- (unsubscripted)are vectors.

3) s is a complex scalar.

4) A(s) is a scalar polynomial in s; F(s) is a matrix

polynomial in s

5) t is a scalar denoting time.

e. Asterisks used as superscripts (;;")denote matrix transposition.
.th i

f. The i column of the identity matrix is represented by e

g. The symbol _ denotes equality by definition;the symbol

denotes identity.

DEFINITIONS AND INTERPRETATION

th
A first integral of the n order system

= f(x),

is a scalar function %:.(x) such that

x(O) =

%:..[x(t)] E g:::(x o)

N 0 , (i)

(z)
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is satisfied along any solution of (i). Alternatively,

fined by the condition

f
The equivalence

f(x)" grad (r :.(x)

_,(x) can be de-

- o. (3)

between (Z) and (3) follows directly from the identity

d%:..[x (t) ]
-- x(t). grad G.,.[x(t)] ---- f(x). grad G,(x) l (4)

dt "" "" I x = x(t) "

Geometrically,

trajectory initiating on it, must remain on it for all t . Henceforth,

the term "integral" will be used interchangeably for the function %:=(x)

and the surface %,=(x) = constant. The meaning should be clear from

the context.

An isochrone is a surface defined by setting the scalar function

_o(X) = constant where _o(X) satisfies

_o[X(t)] _=¢o(X °) + t (5)

along any solution of (1). Note that, as in (Z) - (3), the condition (5)

is equivalent to

f(x). grad _o(X) ---- 1 . (6)

For a geometric interpretation, assume that two trajectories of (1)

start on the same isochrone. Let the initial condition be x ° for one,

andS° for the other. Then

(2) defines an integral surface such that any state-space

O-o(X° ) = _o(_°) . (7)

At some time t assume that the first trajectory crosses another iso-

chrone defined by _o[X(t)]. Let _ represent the time at which the

second trajectory crosses this isochrone. Then by definition

tClearly, it is only necessary that (3) hold identically on the single surface

0-,,,._(x) = 0-.(x°) ., however, if (3) holds in a neighborhood of x °, then there

exists a family of integral surfaces _,(x) = constant in that neighborhood.
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[._(t) ]Go[×(t)] = Go (8)

The characteristic property of an isochrone is such that (8) must imply

t = _ . (9)

Thus the time for points on various trajectories to move between fixed

isochrones is constant;hence the term "isochrone." In subsequent work

this term will refer to either the function Go(X ) or the surface

Go(X ) : constant.
A A

X •A regular point is one such that f(_) @ 0 A singular point x,
A

which is such that f(_-): 0, provides an equilibrium solution x(t) -- x

of (1).

GENERAL THEORY OF INTEGRALS AND ISOCHRONES

Theorem i. If 0-I, G Z, ..-, Gn_ 1 are integrals for (I), then so is

%:_(x): [(G 1, o-z, .'-, Gn_l), (io)

where _ is an arbitrary function of its n-i arguments.

Proof. ]By composite differentiation, (i0) yields

n-i

f(x). grad G,_,_(x)= _, 88_G.[f(x) • grad Gj] = 0 .

j=l J

(11)

Theorem Z. Every integral ¢,(x) can be expressed in the form (i0)

in a neighborhood of a regular point_ if ¢i' CZ' "''' _n-i are function-

ally independent at that point [i. e., the vectors grad ¢i' (i = i, Z, ...,

n-l), evaluated at 2, are linearly independent].

Proof. If the n-vectors grad Gi,(i : i,
A

independent at x, then the matrix

Z, -.., n-l), are linearly
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8o-1 _o-Z 8O-n_1

8x I 8x I 8x I

8o-1 O_Z 8O-n_1

8x Z 8x Z Ox Z

8 o-1 0 o-Z 8 O-n_ I

8x 8x 8x
n-i n-i n-i C_)

, (zz)

must be non-singular. [Note that since the x's can be arranged arbi-

trarily, x can be chosen with no loss of generality as that variable
n

for which the vector , ..., _ is linearly dependentX ' 0X
n n

on the rows of (12)]. Then by the Implicit Function Theorem [see

Appendix I] the transformation

o-i : Pi (xl' xz' ..., Xn_l, Xn)' (i = i, Z, -.., n-l) (13)

has a unique inverse

h k "'"
• •

Xk = (°-I' _Z' " ' _ Xnn-l' )' (k = 1 Z, , n-i) (14)

A

in a neighborhood of x.

Or, in that neighborhood,

°-i= Pi[hi(+1' _Z' • O-n_t Xn)' • hn_l(O-l, O-Z, ,_n_l,X_,Xn] (15)
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Since (I 5) is an identity, 0-.must be independent of Xn; hence1

-- 0 -- 8x k 8x 8Xn_Xn \k= i n

(i:l,-..,n) . (16)

Now consider an arbitrary integral

o%:.= _(x I, x Z, ..., Xn_l, Xn). (17)

Applying (i4),

o-"-,-= P':-'[hl(o-l'°-2' "" "' o-n-i , Xn), ... , hn_z (o-l' o-2'" "" '(rn-l'Xn)'Xn ]' (18)

and so

Before proceeding, note that the definition of an integral requires that

f(x). grad o-, ----0 f(x). grad o-. -- 0 (i=l 2,-.., n-l) ,

or, in vector-matrix form,

[grad o-l' grad o-2 ..., grad o- i' grad o-,]":_f(x)-- 0

A

Since f(x) _ 0, this can .only be valid if, at x,

n-i

grad o-'_',_= _ _fi grad o-.i'

i=l

where the Yi are constants not all zero. In scalar notation, (21) is

(19)

(20a)

(Z0b)

(Zl)
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a x k

n-i
3 Pi

i=l

(k=l, , • . o , n), (22)

With this, (19) becomes

n i i=l n \i=l

or, rearranging the summations,

d 0- .,.

dx
n L\i: ;Cx ] •

By (16), then,

do-,
I

dx __ O,
n

which indicates that o-, is not a function of x
n

(18) has defined a function _ such that

Yi (23)

(24)

(25)

Thus the construction

o-" = _ (o-I'o-Z' ' o-n-I)

and the proof of the theorem is complete.

Theorem 3. Let o-. be an integral, and o-n
function

is an isochrone.

an isochrone.

(26)

Then the

= 0-.,.+ ¢ (27)o-o -,- n

IA theorem similar to Theorem 2 is given in [4, p. 115]. However, that

theorem refers to n independent time-varying integrals; in [4], if 0-
n

is an isochrone, (o-n - t) is called an integral• Theorem 2 is not a

direct corollary of [4, p. i15].

B-7



Proof. Since

f(x)- grad o- = f(x) • grad o-, + f(x). grad o-
0 _," I1

(27) must be an isochrone.

=0+i= i,

Theorem 4. Let o-n be an isochrone, and let o-I, o-2, ...

first integrals, functionally independent at a regular point _.

every isochrone o-° can be expressed in the form

(r 0 = _(o-l, 0"2 . "" ", 0-.. i)+ o-

in a neighborhood of a point _ for an appropriate function

, O-n_ 1

Then

Proof. By hypothesis,

(Z8)

be

(29)

whence

f(x). grad o- ------1 f(x)- grad o- -- 1 (30)
O ' n

and o- - cr
0 n

2 applies, and o%:..must have the form (i0).

have the form (29) in that neighborhood.

f(x)" grad (0-° - 0-n)- 0 , (31)

o-, must be an integral. In a neighborhood of _ Theorem

Thus every isochrone must

B-8



RELATIONSHIP TO CONTROL THEORY

The value of the concepts introduced in the preceding pages to the

theory of automatic controls is embodied in the following theorem:

Theorem 5. If 0-1(x;e), 0-2(x;e),-.., _n_l(X;e) are first integrals

and C_n(X ;e) is an isochrone for the system

= Ax + ae , (cz = l) , (32)

and if the elements of the vector _ = [_l(X;e), _g(x;e),... , e_n(X;e)]

are functionally independent at _, then in a neighborhood of _ there

exists a unique transformation _ = p(x;(), and inverse x = h(0-;e) between

the system (32) and the system

n

6-= ee , (33)

where p and h are n-vector functions and _ is a parameter only taking

on the values +i or -i. (The reason for making e a factor in the defini-

tion of the isochrone will become evident later. )

Proof. By the definitions of integrals and isochrones, _r. -- 0,
1

-- • = l, or _- = (, whence (3Z) implies (33). How-(i i,'" , n-l) and _[rn n

ever, by the Implicit Function Theorem [ see Appendix i ] , the implicit

equation 0- - p(x, _) = 0 has a unique solution x = h(0-;() near _, because

the Jacobian matrix 8(_ - p)i/Sxj = -SPi/Sx.j is non-singular at _ by

hyp othe sis.

Geometrically, the nonlinear change of coordinates described

above rectifies the state-space flow of (3?-) into the most elementary

possible dynamical system, namely uniform rectilinear motion along

parallel straight lines. Solution of the system (33) is, of course, trivial.

APPLICATION TO HAMILTON-JACOBI EQUATION

If the transformation between (32) and (33) (i. e., between x and

coordinates) can be found explicitly, solution of the Hamilton-Jacobi
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partial differential equation encountered in optimal control theory is
facilitated.

Consider the problem of choosing the control _ in (33) such that

the cost functional (or performance index)

t1

_(x °) = _f ,I,(x) at

o

is minimized.

[erminai time

by the solution of the Hamilton-Jacobi Equation [6], [7]

rain Ix.A _:_grad _(x) + (a. grad _(x) + 9(x) 1 = 0
(

When a. grad • _ 0, this expression is minimized by the choice

= -sgn[a. grad _(x)] ,

(34)

1
Here x(t) = x is a given stopping condition so that the

t 1 = tl(x- ). The optimal control e = c(x) then is given

(35)

(36a)

and so (35) becomes

x.A* grad ¢(x) - ]a. grad ¢(x)] + ¢(x) = 0 (36b)

Now, when Theorem 5 applies, Equation (36) may be transformed from

x-coordinates to _-coordinates by setting

¢(x} = • [t'1(o-; _}] A__$(0-; _) , (37a)

h

_(x) : _[h(¢; _)]_=_(_; () . (37b)

Correspondingly, the pair (A,a) becomes (0, en), and so the Hamilton-

Jacobi Equation (36) becomes

c O_(o-;C}OO_n _ "_(o-;_) , _ :-sgn [8_n ] (38)
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For constant _, the general solution of (38) is

A A

_(o-;e) : _o(O-1,

(Y
n

• • / /%

°-Z' " ' _n- i;_) - e.] _(_, _) d_ , (39)n

o

A

where _o(_i, _Z''''' _n-i ;e) is an arbitrary function. In fact,
A

-- 0 whence (39) obviously satisfies (38). Thus (39) is a par-8_/8o- n ,

ticular solution of (39). On the other hand, the difference between any

^ , which is
two particular solutions of (38) must be a solution of 8_/a_ n

fully accounted for by the arbitrariness of $ in (39)•
O

Thus if the transformation laws x= h(_;e) and _ = p(x;e) are

known, an important class of optimal control problems can be reduced

explicitly to the problem of properly piecing together functions of the

type (39).

EXPLICIT CLOSED-FORM TRANSFORMATION FROM x TO 0-

Theorem 6. The system (32) is equivalent to (33) under the trans-

formation defined by

_o(S) = v(s)'x (40a)

1
e log 1 + eS_o (s) ds, (j = 1, 2,.- • n)

o-j - z_4-- 1 A(s) s

IsI=P (40b)

where llxll is sufficiently small so that S_o(S) < l, and the path of

integration is a circle enclosing all the roots of A(s) = A(ki) = 0,

(p > maxlkil ). (Recall that the quantities v(s) and A(s) are defined in

in [1]. )
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Proof. Differentiate (40b) with respect to time and apply

[ i, (iZ5)]tto obtain

or

/ -I c ds, 41a>
6-j - ZIT_,]--1 ACs ) 1 + CS_o(S)

Isl=p

(_ sJ-l@l dsI" sj-I i_S_o(S)+ Z ds i

6-j= "Z_/---------_._ _(s) i + _S_o(S) Z_T4-1 J 1 + _S£_o(S)

Isl=p Isl:p
(41b)

Now, since _ : +i, the first term of the right side of (41b) becomes

& sj- 1
21T_,/--I J A(S) - _6jn ' (j : i, Z,''', n)

isl--_

(42)

The derivation of this result is given in Appendix 2. The remaining

term on the right hand side of (41b) can be expressed as

z_,f-i Isl:p l+(s_°(s) Z_r_'/--I Isl:p k:O

ds - 0,

(43)

'_ I_o(_)I -- < (_ fact, since the integrand in (43)is ana-

lytic in s, Cauchy' s Theorem implies that the integral in (43) is identi-

cally zero.) Combining (42) and (43) with (41b) yields

: 8 , (j : I, Z, "'', n) , (44a)
6-j jn

or, in vector notation, the desired system equation

= _en (44b)

must be valid. Note that the condition,.IP£o(P)I< 1 can be obtained as a
1

where v is
constraint on lixii by applying (40a) to obtain Ilxll < pv(p)

the upper bound of IIv(s)II on Isl = p .

J'[l, (125)] refers to Reference [i], Equation (IZ5).
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Corollary 6. I. For distinct k., (i= i Z, "'" n), it is clear that
1 ' '

integration of (40b) by the Calculus of Residues yields the closed-form

expressions

i i

_i = v'x, v = v(k i) , (i = i, Z, "'', n) , (45a)

o-j = __, A'(ki) log [ 1 +eki_i] , (j = i, Z, ''', n) , (45b)
i= 1

where _i are simply the components of the state vector in Lur' e canoni-

cal form If].

In cases for which the system eigenvalues are non-distinct, the

explicit evaluation of _ is not as simple as in (45). For convenience,

define

csj-l
n(s,_,_)- s log [1+_s_a(s)] . (46)

Then (4Z) becomes

i f n(s,Go,_)

o-j- Z-_/-- 1 2 A(s) ds (47)

Isl=p

Assume that _(s) : 0 has I _<n distinct roots X. such that k. is a root of
1 1

multiplicity Ji ' that is,

Jz J_
J1(s _z) (s _) (48)ACs) -_ (_ - kl) ...... ,

where

Jl + JZ +''" Jm = n (49)

Then by a partial fraction expansion in (47), [5],

B-13



1 iv ds

o-j = Z--_------_ Ji-v+l

Is 1 v=l (s- k i)

(50)

where _ is the number of distinct roots of A(s) = 0 and

,pk A 1 dZiI_ s - k i) 1q(S,_o, c)

iv = (v- 1)[ tdsV 1 A(s) s - X. (51)

1

The theory of complex integration then yields the following result.

Corollary 6. Z. For non-distinct h., the transformation (40) has
1

the closed-form expression

. = _ lkiv] , (j " 1, Z, "'', n)
o-j i= 1 v=Ji

(52)

EXPLICIT CLOSED-FORM TRANSFORMATION FROM e TO x

Theorem 7. Assume that the system (32) is controllable. The

transformation _ = p(x, _) has a unique inverse x = h(_, _) given by

x- - exp e +_s - 1 u(s) ds ,

2rr'4- 1 ] P =

where u(s) is defined in [I].

Corollary 7. i. When the k. are distinct, the inverse of (45) is
1

given by

x = exp e _v - I

(53)

(54)
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Proof of Theorem 7 and Corollary 7. i. The simplest proof of

Theorem 7 seems to be that in which Corollary 7. 1 is proved first,

independently, and then used as a lemma in the establishment of the

theorem. In other words, (54) will be proved and then generalized to

(53); subsequently, (54) can be recovered as a special case of (53).

Consider (45) and define a vector q such that each component is

given by

11og11+ _,i_i] , (i : _, a,--., n)
qi - A' (ki) k i

(55)

Then (45) can be expressed in vector-matrix form as

o-=Zq , (56)

where Z is the Vandermonde Matrix.

As shown in [l], the inverse of Z is given by the transpose of a

matrix W = (w 1 2, w , ---, w n) such that

n ki)j- i nI E
w = A' (ki) _k ek-j+l , (i = i, Z,

j=l k=j

, n) , (57)

where the ak are the coefficients of the characteristic polynomial A(s)

of the system. Thus (56) yields

W*q= _ , (58a)

or

i
qi = w .o- , (i = 1, Z, .-', n) (58b)

Then, combining this with (5) gives

1
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Now, applying (57),

i

_kiA,_ki;w' ' ._ =

n n n rl

K" xJek'j+l X X%Xi k-j+l
j= 1 k=j j=l k=j

• o- .(60)

To transform this last formula to a more convenient form, replace

k by a new index v: k - j + I and obtain

n n-j+l

kiA'fki) w ._ = /, /, -v+j-l"i cv

j=l v=l

(6i)

Interchanging the order of summation in (61) and letting _ = j -

n n-v

Ek /V(K.) Wi'. o- -- Z E _ k_+l1 1 v+._ i °-v

v= 1 _ =0

l,

(62)

Then, applying this result and [I,(108)] to (59), it is clear that the

desired transformation formula is

= = -- _ k _+io- - i ux _iui _ exp c v+f i v

i=l v=l f=0

(63)

Now define a transformation x = h(_,_) by (53). Using the Calculus

of Residues, it is clear that (63) is equivalent to (53) when the k. are
I'

distinct. Also, for distinct k., (45) and (40) are equivalent. Hence it
1

is certain that (53) is the inverse of (40), at least when the k. are dis-
i

tinct. It will now be shown that this proposition is valid for all systems,

even when the k. are non-distinct. To verify this, consider (40b) in the
1

= p(x; (, A, a, ) , (64)

and define A to be simple when the roots of its characteristic polynomial

A(s) are distinct. It is well known that if A is not simple there are

simple matrices Ao such that IIA-Aol I is arbitrarily small.
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It has been shown that there exists a function h(0-;( ,_A,a), namely
(53), such that

A

h(p(x;(,A,a);c,Av)) A= h(x;(,A,a) =_ x (65)

is valid whenever A is simple. Now take A non-simple. Let IAvl be a

sequence such that A w is simple for each v = i, Z, 3, "'" and such that

Av---A as v---co. Now the integrand in (40b) is a continuous function of

x, A, a, and ( since v(s)is a polynomial in A, a, and i/A(s) [l, (l19b)].

Recall also that i/A(s) is an infinite series in powers of s-1, which

converges for Isj > max(ki), whose coefficients are rational functions

of A. Thus p(x;(, A, a) is a continuous function of all its arguments.

Clearly, an analogous result can be obtained for h(0-;(,A, a). Thus

A ^e,A,a) is continuous in all arguments and so h(x;(,A w, a)---h(x;(,A,a)

as v-,c0. But since h(x;_, A w, a) = x, St follows upon taken the limit that
j,,

h(x;(,A, a) = x. This completes the proof of the theorem.
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EXPANSION OF _ IN SERIES OF
RECURSIVELY COMPUTABLE MULTINOMIALS

Theorem 8. The functions _. defined in (40) may be expressed as
I

oo

¢'i= _, _¢°_+n-i+l , {i = I, 2,...,n) {66)

_=0

.......... _= ,$_I is recurslvely computable fromwhere the _pquence
l

the definitions

9o = i, _ =- _ c_j+n_ _ _j , (_ = 1, Z,''',n) (67a)

j=0

f+n-i

_£+n = - _. c_j_£_j , (_ = 1,2,''') (67b)

j=_

and where the functions w w = _v(X) are multinomials of degree v in 91,

92,...,9n, also recursively computable by

_I = 91 (68a)

v-i

c _ (v = 2-'' n) (68b)
¢_v = 9v v /, m _mgv_ m , , ,

m=l

n (w = i, Z,.'-) ,

- Z (v+n-i) 9iWv+n-i

E
(68c)

Wv+n w+n
i=l (i-- 1,2,-.-,n)

and the @i's are linear functions of x defined in [i].
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Proof. By a Taylor expansion

O3

c log (I + _S_o(S)) = K-_Z _ I_,_11J+1o j [eoS_o (s)]j ' (69)

j=l

for I'S_o(S)l < 1. Now, since to(S) is a polynomial in s, (40a), [i, (119b)],

the right side of (69) is an infinite series in s and so

CO

c log [l+_S_o(S)] = ¢0.sj , (70)J

j=l

where the coefficients _j, (j = 1,2,''' ), are to be determined• To

accomplish this end, differentiate (70) with respect to s, obtaining

2d[S_o(S)]/ds
CO

1 + eS_o(S ) j=l

= y j_s j-1 (71)

However, from [I, {123)]

n

to(S) = _ si-l_ i

i=1

, (72)

and so {71) becomes

_' isi-l_i = l+e " 1 =

i=l i=l j=l

(73a)

co n co

s j- 1
_,JC'j + 2 I " i+j-1= • _ Jwj_is

j=l i=1 j=l

(73b)
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Let k = i+j in the second sum on the right-hand side of (73b) and

replace the index j by k-i to obtain

n co n co

= " 1 k-iS_s_ S_s_+_7 S_,_ _
i=l j=l i=l k=i+l

(74)

Then, interchanging the order of summation for the terms in question

rain

n co co (k-l,n)

• sj- 17_s_-_:S_j+_7 7 _,_sk_
i=l j--l k=Z i=l

(75)

Now, equating like coefficients of s in (75),

_°i = _i '

rain

(v-l, n)

£ _ " .
= _ - -0- _ (v-1) _i_v _i '

i=l

(76a)

(v = I,Z,''') . (76b)

For v= Z, 3,..-,n, let m = v-i and replace i in (76b). Then

v=l

_°v = 9v -'5 m_0mgv_ m , (v = Z,'-',n) (77a)

m=l

For v= n+l,-'', replace v in (76b) by v+n and obtain

_0
v+n

n

_S
v+n

i:l

(v+n-i) 9i¢°v+n_ i (v = l,Z,..-) (77b)
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Thus the to's can be generated recursively as functions of the 9's as

claimed.

Note that, using (70), (40b) can be expressed now by

CO

1 fsilxxsjo-. _-- X_] s _" ds.3
z'_G] Isl=P j=l

(78)

As shown in [1, (29)] ,

CO

1 _ (n+.e)_(s) - p_s- ; (Isl> p)
._=0

(79)

where the _'s obey (67a, b, c). Then (78) becomes

CO CO

o-. - i + -n-L +j+i-__,., y y _ _ds,
_=0j=lIsl-P

(i = 1,2,''',n)

By residues, this becomes [-n-_+j+i-i = 0 when j = _+n+l-i]

(80a)

CO

X-_

o-. = _) _o_+n+l_ i (i = 1, Z,--. n)1 ' '

._=0

(80b)

the desired result.

Corollary 8. 1. The nth order scalar differential equation

dnO

1 o_n]
dtn

(81)
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has for a complete system of integrals and an isochrone the

multinomials

[i-1] e[i] ... e[n-1] )_i= _i @i ' I ' ' I ;_ '
(82)

defined recursively by

(83a)

n-i

°i = 0_i-1] _ _ ^[i+m-1]n- i+l m°-n-m+ 1u 1

m= 1

(i= 1,2,--.,n-1) (83b)

n

Proof. Since the characteristic equation for (81) is A(s) = s ,

o = _l = "'" = _n-I = 0. Then from (67a, b) it is clear that _i = 0 ,

(_ = 1,2,...), and so (66) becomes ¢'i= C°n-i+l" Also, by [i, (65)]

@i = @n-i+l = @In-i]' (i = 1, Z,.--,n). Thus (68a) yields (83a) and {68b)

yields (83b), directly.

The integrals of 0_3]=_r and 0r'[14]= _ given in [3] can be gener-

ated systematically by use of (83).
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CLOSED-FORM EXPRESSIONS FOR COEFFICIENTS
OF POWER SERIES EXPANSION OF ¢

Theorem 9. The functions _. defined in (40) may be expressed as
1

(a*)j-1 1 (x.Ojx)_j = b.x-_ + ''-, (j = I, 2, ''-, n) (84a)

where (see [I] )

QI

o o ... o 1 _i

0 0 ... 1 _i _Z

o o ... _i _z _3

1 _ 1 " "" _n-3 _n-Z _n-I

i _z "'" _-2 _n-I _n
m

D-I (84b)

-1
D

n

= ( "b, Szb, -.., Snb), S i = a. A j-i
S1 j=l J '

(84c)

n
D = (a, ia, ..., An-la), D'=b = e . (84d)

Qj+I = A Qj, (j = 1,2,..',n-1) (84e)

Proof. It is well known that for I ki _i I < 1,

2 i 2
V-. log (1 + _ k. _i ) = _ _ - _>_i + "''"1 i S _i

1

(85)
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ThenFor simplicity, assume (temporarily) that the k.1 are distinct.

(45) becomes

n (ki) j-1 n (ki)J-1

o-j = A'(ki) _i - Y A'(ki) i + "''"
i= i i= i

(86)

By [1, (98)] and [1, (49a) ]

_.= (A)
3

n ' 1
i -- {'_'i)j z

b-_-T_>_ A,(_i) ki_i +'''"
i= 1

(87)

i

Now since _£i = v "x,

i (ki)j- 1 Z i (ki)J _':_.....
E_{-f_]_i_i = _{T# x d{v% x = x Ojx

i= I i= I

(88)

where

n (ki)j . .
1 (v 1) *

QjZ_ I= A' (ki) v
i=l

(89)

Since v is an eigenvector of A [i, (igZa)],

i (ki) j+ 1
ACQj = EF_i i {vi){vi);:" = Qj+I'

i= 1

(j=l, "'', n-l). (90)
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However, by [i, (I05), (gZa)]

i i .... i i "Q1 : A,(ki) v (v_)"" = V A,(ki) e

i=l =

-i-

V =

coI li_-
i= 1

i i * D- 1
A,(ki) e (ei)":; Z .

(91)

Define the matrix E by

n k.

X i i(zi)*,E_ _,.._i_z
i= l

i _)thwhere the z are the columns of Z. Thenby [i, (75)], the (w, --

element of E is

(9Z)

12e -Ee _ :

n k.

A, - 1 i.
i= i

(93)

In Appendix 3, it is shown that

n (ki)v+_-i
V'Ee_X _ : _v+_x-n '

e : Al (ki)
i=l

(v,_ = i,-.-,n) , (94)

when the _'s are defined as in (67a, b, c). Thus the theorem is proved

for simple matrices A.

However, since (40) is analytic in a neighborhood of x= 0, there

exist vectors _i = _i(A ' a) and matrices R i(A, a) such that

_. = _J-x- 1 {x.Rjx) .... n) {95)3 _ +..., (j 1, Z, , ,
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for all A. Furthermore, (A, a) and Ri(A, a) are rational functions
of the elements of (A, a). But the expressions in (84) are well-defined

rational functions of (A, a) whether or not A is simple, and it has just

been proved that

(A;',_)j- 1 (A_:_)j -J = b , R. = IQI, (J = l,...,n) , (96)J

whenever A is simple• Hence by the continuity argument used after

{65). the rpl_nships I_L,_.... _Tuj _mustremain valid for all matrices A, simple

or not. This concludes th_ proof•

Note: The Jacobian matrix for the transformation defined in (40) is, by

(84a), L= [b, A_':'_b,"'', (A_':'_)n-lb]. From [i, (16)] detZ=detD

and L is non-singular if the system (32) is controllable. Thus

the _. (i= i, Z, ..., n) defined by (40) are indeed functionally
1

independent at x= 0.

CONCLUSIONS

The functions _i(x' _ ) may be mechanized to any desired degree

of accuracy by means of (45), or (66)-(67), or (84). This facilitates the

synthesis of optimal feedback control systems as indicated in the discus-

sion following Theorem 5.
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APPENDIX 1

IMPLICIT FUNCTION THEOREM

Consider the m-valued vector function f(x, y) where

x = (xI, x Z, --. , Xn)*and y = (Yl' YZ' ''" ' Ym )_:_"Suppose that

f(x, y) has continuous first partial derivatives with respect to the

components of y in a neighborhood of a point (_, 9). If

(i)

(ii)

det

8f I 8f2

8Y 1 8Y I

8fI 8fg

8Y g 8Y 2

= 0

8f
m

8Y 1

8f
m

8Y Z

8f I 8fg 8fm

8Ym 8Ym 8 Ym

_0,

¢3,

(1. i)

(i.z)

then there exists in a neighborhood of (_, _) a unique set of functions

gi = gi(x) ' (i =l, Z, ... , m), such that

Yl = gl (x)

Yz = gz(x) (1.3)
• ° . • .

Ym =gm (x)

represents the solution of f(x,y) = 0 near (_,_) in the sense that

f(x, g(x)) - 0 (1.4)

is valid in this neighborhood.
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APPENDIX 2

Theorem. If the roots k. of A(s) = 0 are distinct, then
1

n (ki)j- 1

X A, (ki)
i=l

- 6in , (j = I, Z, "'', n). (Z. I)

Proof. (D. C. Lewis). By the theory of res_d___.es,

f sJ-i i (ki)j-1
z_(s----[ds = z_-7 _,(ki)

isl-- i=n
, (J= 1,2,3...) , (z.z)

where p > max Ikil ,

integral directly as p

(i = l, 2, .,. , n). Now evaluating the above

becomes arbitrarily large yields

sj-1A(s)
Isf=

dS =-
lim f2_

_/7°m 
WO m=O

2_ _ dY

(m-j)
exp [(m-j)_-i 7]

(z. 3)

where s = p exp ( ff -i _'.). For j = i, 2, "'', n-l, then,

f sJ_ia(s)
Isi=p

ds= 0 (Z. 4)

B-28



• and for j : n

sj- 1 Lg_rA(s) ds =
Isl = P

Thus from (2. Z) and (2. 5) the theorem is proven.

(2.5)
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APPENDIX 3

Theorem. If the roots of A(s) = 0 are distinct, then

{Xi)j- 1
(-ky = _j-n ,

i= 1

(j= 1, Z, 3, • • . )° (3. i)

Proof. _'rom (79)

GO

_(s---Y ds = _v s
I s : p Isl:p _:o

ds. (3. z)

By the theory of residues [-n-vl-j = 0 when v = j-n]

s j_lA(s) ds = 2_-2-1 _3j_n.

Isl= P

Combining this with(Z.2) gives the desired result immediately.
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HIGH ORDER SYSTEM DESIGN VIA STATE-SPACE CONSIDERATIONS

R.W. Bass and I. Gura, Guidance and Controls Division, Aerospace Group

Hughes Aircraft Company, Culver City, California

Abstract

For nt_h order constant plants, it is known
(Letov, 1960) how to pick n desired closed-loop

poles guaranteeing optimality relative to quadratic
integral criteria. Also it is known (Bass, 1961)

how to synthesize closed-loop poles arbitrarily by
state-variable feedback, provided Kalman's criter-

ion of controllability is satisfied. In this workthese

principles are combined into a unified design pro-
cedure incorporating the algorithm of Leverrier

(1840). If only m < n outputs can be measured, an
ideal system can be synthesized "asymptotically"

by a feedback filter which processes the outputs,
provided Kalman's criterion of observability is

satisfied. If the filter is physically realizable by
a passive network, the absolute smallest numberof

new poles which must be introduced for mere sta-

bility is in general [(n/m)-l]. But the only general
designs of the filter are those of Kalman (1961)and

Luenberger (1964) which introduce, respectively,
n and n-m new. poles. Here a closed-form compu-

ter oriented general synthesis algorithm is
presented which designs the filter to have only
about [(n/m) - I)] poles.

Introduction: Matrix Transfer Functions

and the Re solvent; Lever rier' s Algorithm

Consider the open-loop system (uncontrolled
system or plant) which evolves in time according
to the differential equation

= Ax, x(0) = x °. (1)

Let s be a complex variable, and let £ denote the

Laplace transform operator; write x(s) for ix(t).
Applying £ to _(1), obtain sx(s) -x ° = Ax(s), or
x(s) = (sI-A)-I Ox. ByCramer's rule, the resol-
ven____tmatri______x(sI-A)-i is such that each of its ele-

ments is a ratio of polynomials in s (transfer
function), and is defined whenever s is not a root
of A(s)= 0, where

n

A(s) a_- det(sI-A) = i_0ai si, (an= 1) (Z)

is the open-loop characteristic polynomial. Now
clearly the general solution of (1) is

x(t) = exp(At)x °, exp(At) = £-l{(sl-A)-l}, (3)

where each element of the state-transition matrix

exp (At) is the inverse Laplace transform of the

corresponding element of the resolvent. A more

explicit form of the resolvent can be defined (__)in

terms of the matrix polynomial [numerator transfer
matrix]

n

F(s) A= _,si-lsi ' (4)
i= 1

where the matrices S i are defined for i= 0",l,Z,---,n
by n

Si _a ._.ajA j-i, (Sn= I). (5)

J=l

Now it is well known [4] that the resolvent [open-
loop transfer matrix] is

n s i-I .

(sI-A) -I = F(s)/A(s) = =_ IS.i 1 _ 1' (6)

The theoretical definitions (2), (5) are useless for

large n since they involve n! multiplications. Alter-

natively, a recursive algorithm for computing 4
a a. --- a . and S. S_ ... S , in about n
O' I' . '. n-I I' K'. ' n-I i -multlphcatlons can be der*ved from Newton s iden-

tities between the a i and the elementary symmetric

functions of the roots [open-loop poles or plant

poles] of (2); this is [6, 7] Leverrier's _ithm
(1840), sometimes called by other names [8] s-_nce

ithas been independently rediscovered or improved

by Horst (1935), Souriau (1948), Frame (1949), and

Faddeev and Sominskii (1949). The algorithm is,

for (j = 1, Z,...,n),
A A

a = 1, S = I (7a)
n n '

an_ j= - (1/j)tr(ASn_j+l), Sn_ j= an_jI+ASn_j+ 1.

(75)

As an automatic self-check on round-off error,

note that (in theory) S o = 0. The first mention of
(7) in control literature appears to be that of Zadeh

and Desoer [5] in 1963, although one of the present
authors has used (7) in actual control design since
1960 [1, Z].

Relation between Open-loop Poles and

Closed -loop Poles

Suppose that the rate of change of the state vec-

tor is modified by a forcing function qJoa, where the
scalar function qJo = _o (x) is the feedbac_kk control

law and the constant vector a=(ai) is the actuator
vector. Thus

= Ax+a%b o • (8)

For linear control

% = g.x = g x, (9)

where matrix transposition is denoted by an aster-
isk (*). (Vectors are columns unless otherwise

specified.) Thus (8)-(9) becomes the closed-loop
system

= (A+ag*)x = /kx (I0)

and

&isiA(s) _ det(sI-A.) = (11)
i= 0

defines the closed-loop characteristic polynomial.
Since computer algorithms for finding the roots
(given the_i), or conversely, for synthesizing the

_i (given the roots), are standard, the specifica-
tion of the system poles and of A will be treated

as equivalent propositions. Although there are
various ways of choosing a desirable A, it will be
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assumed for the present that this choice is not an
issue. Of course, it is required that exp(_t)decay

to zero as t increases; hence the systempoles must

have negative real parts. Accordingly, A must be

a I-Iurwi.__tz polynomial. Here the relationship be-
tw"_n _ and A is analyzed assuming only that the

gain vector g is known.

Bymeans of the numerator transfer matrix
F(s) it will be shown that [1, 2]

&(s) -- A(S) - g.F(s)a, (iZa)

or, equivalently

_i = ai- g'Si+la' (i=0, 1,...,n-I). (1Zb)

The proof of (12) rests on the determinantal identity

det(l+cd*) = 1 + d-c. (13)

To establi.qh (1 _)_ nnte that (bec__,_,seR dctcrr'.,iY_ai-_t
is an alternating multilinear function of its column
vectors) det(I+cd*) = det(el+dlc, ..',en+dnc) =

det(el, ... ,en)+dldet(c,e 2,...,en)+-..+dndet(e 1 ,
e2,...,c) = l+dlcl+..-+dncn = 1 + d.c. Now (lZa)
follows trivially from (6) and (13) since &(s) =

det (sI-A-ag*) = det (sI-A)det (I - [r(s)/A(s)]ag *) =

A(s){1-[1/A(s)]g.I'(s)a} = A(s)-g.F(s)a. (Note
that (1Z) is the basic lemmainKalman's 1964
paper [3], where (13) is referred to as a "well-

known matrix identity"; recently Kalman has
acknowledged [1],[2] as his source. See Appendix.)

Controllability and Synthesis of Arbitrarily

Specified Closed-loop Poles by
State -variable Feedback

The system (8) is controllable in the sense of
Kalman [ 1 1] when

detD ¢ 0, D =_ (a, Aa, A2a,...,An-la). (14)

Accordingly, the system of linear algebraic

equations

(Ai'la).b = 6in, (i= ',,2,...,n), (15a)

where 6in is the Kronecker delta, or, equivalently

D*b = e n, (b= (D-l)*en), (15b)

has a unique solution bit 0 if and only if the system

is controllable. (en is the n t--hcolumn of the identity

matrix.) The vector b is important because the

system (8) is precisely equivalent [10] to the scalar

nt--h order system

A(d/dt)O1 = _o (16)

under the explicit, reciprocal transformations

01 = b.x, x = {F(d/dt)01}a. (17)

One may compute b from (15a)byGaussian elimina-
tion [7], which in general requires only (1/n)_ of
the arithmetic labor of computing D -1. Furthermore,
once b is known, D -1 is known explicitly, for in[10]

the present authors have established the useful

matrix identities [det D = 1/det L]

D-15-- (a, Aa,...,An-la)-l= (S'_b,S'_b,...,S_b)*, (18a)

L-I_ * *)n-lb)-I(b,A b,.-.,(A = (Sla,Sza,...,Sna)*. (18b)

The linear relations (12) may be collected into

the vector equation

(Sla'Sza"'"Sna)*g = - _ (ai-1 "ai-1)ei" (19)
i=l

Now from (18b) and the Fredholm Alternative [15]

for singular equations, the following result [1], [Z]

may be concluded. The s_.vstem (8)-(9) may b._.ee

synthesized with arbitrarily specified closed-loop

pole.___s if and _ if it is controllable, in which case

th___e.gain vector g is, explicitly,
n

g = " 2 (ai-1 " ai-1 )(A*)i-lb" (20)
i=l

The execution of (ZO) on a digital computer, via
Leverrier's algorithm for finding the a i from A,
takes but a few seconds. As a self-check, the

authors' program also computes ._ = A+ ag* and
then reapplies Leverrier's algorithm to verif_ that

the synthesized Z_ agrees with the specified A.

0bservability and Practical Asymptotic

_Reali_atlu,t o£ ideal System by
Lowest-order Feedback Fiiter

The utility of the gain vector g computed by

(Z0) might be doubted, in that for large n not all
state-variables x i may be measured by convenient
instrumentation. Typicaiiy, the only available

system output is a set of m independent, known
linear combinations of the x i, say

= h i.
Yi x, (i= 1,-..,m; l-<m<n). (Zla)

Thus the output-vector y is defined by

y = H'x, H = (hl,...,hm), (21b)

where the known nXm matrix H has rank m<n.

The system is no longer defined by (8)-(9), but by
(Z1) together with

_: = Ax+aqJo' qJo = _(Y)' (22)

where q_o at time t is no longer a function of the
instantaneous state x(t), but rather a "functional"

(operator) on y which depends not only on y(t), but
also on its past history {y(7)l 0_< 7< t}.

The most precise approach to filter design is
based upon Kalman's generalization [18] of the
Weiner-Kolmogorov theory of optimal extraction of

signals from noise. It can be proved [49], [Z0] that
when the choice of the ideal system :_=Ax is opti-
mized according to a quadratic performance crite-

rion, the problem of optimal choice of d?oin(Zl)-(ZZ)
can be split into two separate problems. The first

deals with optimal choice of g, and the second deals
with reai-time minimal-variance unbiased estimates

of x. Lf y= H*x+w where w is a Gaussian

white noise process of a priori known spectral

power density, then qJo-g " _" It can be proved
{unify [IZ],[18] as in [19]-[Z0]; then specialize to
the autonomous case as in [3]; finally, convert to

scalar form, as in (16), by transformationsanalo-

gous to (17)}that the optimal control law qJo can be
synthesized by feeding back the observed outputs
y- through a suitable passive linear filter as in

_'_igure 1. (The pi(S) are physically realizable trans-
fer functions having the same poles but different
zeros.) However, such a filter requires n poles

for an nLb order system. Unfortunately, for large

n this approach, although precise, is impractical
in many applications.

Abandoning the attempt to estimate qJo opti-
mally, a somewhat more economicaI realization
theory may be developed [ 16] wherein the number

of filter poles is equal to n-m. In this theory,
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Figure I. Closed loop system.

the ideal closed-loop system (including filter)may

be specified arbitrarily.

For both theories [18] and [16], an essential

hypothesis is that of plant observability, defined as

rank[H,/_:'H, (/_:)ZH .... , (A*)n-IH] = n (23)

The present theory, however, is based on ideal-

system observability

rank[ H,(A*)H,(A*)ZH, ..., (Ik*)n-IH] = n (24)

and is essentially different from the others. [Note

that either (23) or (24) may hold while the other

fails. ] It will be shown that if m-> Z, (Z4) yields

[ (n/m)- I] -< n-v < n-m (Z5)

where n-v is the number of filter poles required.

Often, n-v can be arranged to equal or approxi-

mate the lower bound in (25).

Refer to the configuration of Figure 1. In

terms of Laplace transforms it is clear that
m

qJo(S) = _i=lPi(s)Yi(S). Call the common poles of

the Pi(S) the open-loop filter poles, and let them

be the roots of a polynomial A (s)--a n-Vy.sj"
-- n-v j=U J

Similarly, let the zeros of Pi(S) be the roots of

A , . _ vi j
(i)%s) - _.j=0YijS , (i= 1,2,'",m). Then Pi(S) =

A(i)(s)/An_ v (s), and in the time-domain the com-

plete system is given by (8), (Zlb), and

m

A (d/dt)% = 2 A(i)(d/dt)y i"
n-v i=l

Applying the transformation (171, the system

reduces to the scalar form

A(d/dt)O1 = q_o'

m n

A (d/dt)_o : __ r_-J z'_ 1>, z_(i)(d/dt) _ (ht S,a)OU_l ]
n-v i=l j=l J

where 01[i] = di01/dt i.
that

(26)

(Z7a)

(27b)

From (Z7) it can be seen

_2n-v(d/dt)O1 = O, (ZSa)

m n

~ '% A(s)A n v(S)-2 A,.._(s) 2(hi.S.a)s j-I (Z8b)
AZn-v(S) = - i=l TM j=l J

where _2n-v(s) is a polynomial of degree Zn-v

whose roots are the actual overall _poles.

Let the open-loop filter poles (An_ v ) as well

as the ideal system poles (_) be specified arbitrar-

ily. Then the only unknowns in (gS) are the poly-

nomials A(i), (i= l,Z,.-.,m), whose determination

completes the design of the feedback filter. For

physical realizability of the filter alone, 0<v._<

n-v, (i= l,Z,"',m) must be satisfied, a

As part of the closed-loop system, the filter

will be said to realize the ideal system if

/_Zn_v (s) = A(S)An_ v (S) , (Z9)

where _n-v is a Hurwitz polynomial whose roots

will be called the closed-loop filter poles. The

realization will be called asymptotic if the open-

loop and closed-loop filter poles tend to coincide

when the real parts of either set are moved uni-

formly toward negative infinity.

Assume the validity of (24) and seek an asym-

totic realization in which 2_ and Z_n_ v are specified

arbitrarily, and the coefficients N::°f the A(i ) arexj
determined as linear combinations of the (arbitrary)

coefficientsYi of An_ v. The relation between Yij

and the y. will at first be inferred from aheuristic

argumentl; then it will be shown that a filter designed

by this method'is indeed asymptotic.

Referring to (?-7b), attempt to choose the A(i )
SO that

m

ixn v(d/dt)(g-x)= _, A,.,(d/dt)(hi.x). (30)
- i= 1 _I)

This could be true identically if x = x(t) solved

x=*x exactly; but note the transient introduced by

the filter. Proceeding, however, on this "asym-

totic" assumption, dlx/dt 1 = (A)lx, holds, with x °

arbitrary, and (30) reduces to

m

An_ v (A*)g = 2A(i)(A*)h i (31)
i=l

= )_, "% * (A*)n- v
Define r "% (Yo' 3(l""'Yn-v Q = (g'Ag''''' g),

and, noting the corresponding dimensions, define

matrices and vectors, for (i = 1, "",m), by

-* i -,',, vi i
K"_=1 (hi'A h ,...,(A ) h ), [nX(vi+ 1)] ;

d i "% )*, [lX(vi+ 1)];
= (Yi0' Yil'''" Yiv i

K a =
= (KI,'",Km), and d "% [(dl)*, "'',(dm)*]*.

Then the condition (31)can be expressed as Kd=Qr.

The smallest n-v must satisfy n-v = max{vl,..., Vm}.

On the other hand, for K to be an nXnmatrix, the

dimensions v imust satisfyn = (Vl+l)+(vz+l)+... +

(vm+l) or v l+v2+.-. +v m = n-m. From this (25)

follows immediately. If v 1 = v 2= .... v m, then

v.=[(n/m)-l] = n-v. Note thatthe columns of Kcan

b_ arranged at wiil if the elements of d are adjusted

accordingly. In particuiar, generate a new matrix

K as follows.
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(a) Start with the columns h i, h 2, ... , h TM.

-* 1 -* 2

(b) Adjoin to this the columns (A)h , (A)h ,'",

(_)hm one by one, checking that each new column

is linearly independent of the previous ones. (Use

the Gram-Schmidt orthogonalization procedure. )

(c) if any of the new columns is found to be

dependent, omit it from the matrix and go on to the
next.

(d) Continue adjoining columns until n linearl]f

independent ones have been found.

(e) After (_)h m has been tested, continue with

(Z_C)2h 1, ... (._*)Zhm, (_.'*)3hl ' ..., (_"_13h TM, ...,

(X*)n-lhl ' "", (Z*)n-lhm.

(f) if a column (A_')ihJ has been skipped

because of linear dependence, all e-n|ll_v_Q of the

form (A*)LhJ where t > i can be skipped, immedi-

ately, since they also must be dependent on the

previous columns.

When observability applies in the form (Z4),

there must be n linearly independent columns in the

matrix K generated as described above. If _ is

the correspondingly ordered vector of n unknowns

thesystem Kd = Qr can be solved for the elements

of d, which (after appropriate re-ordering) define

the numerator polynomials A(i ) of the desired feed-
back filter.

Previously, it was required that the filter in

question obey (29}. This can be verified by an

algebraic manipulation which is both tedious and

rather subtle. Indeed, it can be shown that An_ v

and _n-v are related by the equation

n-_ m

;i-1 : _i-1 + _ _ Ak-ia_-__k/h' "Ak-ial 13Zl
k=i =

for (i= 1, Z, ...,n-v ), where now one defines Y#v = 0

for k >v 1. From the form of (32) the asymptoE_c

equivalence between &n-v and An_ v follows

readily.

Optimal Choice of Closed-loop Poles

Up to this point it has been shown that, given a

desired A(s), a unique gain vector g can be found

(Z0) so that the ideal system

_ = Ax- (A+ag*)x = Ax+a%5 o, qJo=g'x, x(0)=x °

(33)

is sy/%thesized by _^ = _ • x. When only an output

y=H x is observed, %% can be asymptotically syn-

thesized as _o =_(Y)by means of the feedback filter
(26).

For large n, however, the available arbitrari-

ness in specification of _(s) constitutes an "embar-

rassment of riches." To remedy this, the question

of choosing a control law that willie some

performance criterion will be considered. For

present purposes define this criterion as

• : tf0(x-Cx+ _,:)dt, C=G'*ZO, (34)

and call the control _o "optimal" if it minimizes (34).

The choice of an appropriate matrix C is impor-

tant. It must be done in the context of a specific

problem. For example, in aerospace vehicle

stabilization it may be required to maintain certain

quantities Iq i-xl, (i= 1, 2,'-., r_), such as "struc-

tural load", "pitch error", etc., below stated

bounds while minimizin_ the _ or@./ future

time of some critical quantity [q,n. x[, such as

"lateral drift. " The important minimax control

problem may be solved to a first approximation

[exact solution requires nonlinear feedback]bynoting

that, in the integral f_(qrY%._ x(t)/Kt) z dt, the total

contribution of times at which Iqr?* .x(t)[ > W,ohOlds is

%2

"penalized" disproportionately in comparison to that

of times at which [qm'x(t)[< w-oholds. Hence it

would be desirable to find a performance criterion

which minimizes the above integral while at the

_+_ i

same time maintaining J0 (q .x)Zdt, (i= 1, Z,".,

*Y_-I) and f0+_: dt within required bounds. All this

can be accomplished by defining

tClql(ql)* qr_ (qrYl)*c _ + "" + _fn (35)

in (34). If rn >_ n, and the qi are linearly independent,

C is positive definite. The theoretical development

of this case is more straightforward than that for

which I"71< n and C is only guaranteed non-negative

definite.

Another approach to choosing C can be found

in the "implicit model reference" method mentioned

by Soviet authors such as Aizerman. Basically, it

is desired to force 81 = b. x to behave in the mean

like solutions of A_(d/dt)81 = 0 where Aft(s) is a

Hurwitz polynomial of de_ree _ < n. Using (17) it

is clear that Ai_(d/dt)01 = [A_(A*)b] • x whence the

matrix C to be used in (34) is

C _ qq$, q _ A_(A*)b. (36)

The first general results on the solution of the

problem described in (33)-(34) are due to Bellman,

Glicksberg and Gross in 1954 (cf.[9] 7- After slight

modification of their derivation, it can be shown that

their work gives, for C > 0

0_o = a.p, (37)

where the "co-state" vector p satisfies the tw__oo-

Lagrangian boundary-value problem defined by

(I) and

_+ (A _ -CAC-I)# - C(AC-IA *+aa_)p = 0, x(+¢o)= 0.

(38)

However, the numerical methods they suggest for

solving (38) apply only for fixed x ° and do not yield

(37) in the feedback form _do(X ) needed for synthesis.

In 1960, Letov [21] implicitly assumed con-

trollability via the use of Lur'e coordinates [ 10] and

improved (37) by showing that under slight restric-

tions there exists a constant matrix B such that

p = - Bx, (39)

whence the optimal control law determined by (34)

is linear:

¢o = g'x' g =- -Ba. (40)

Letov applied the classical Euler-Lagrange neces-

sary conditions to (33)-(34), and expressed the

result in Hamiltonian form [readily seen equivalent

to (38)]
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(:).I:l.0(:-A _ /, (41)

After defining AZn(S) _ det (SI2n - H) and showing

that AZn(S ) is a polynomial in even powers of s

only, he concluded that if the roots of this polyno-

mial are distinct and non-imaginary, the n Hurwitz

roots are the optimal poles of (33)-(34). Hence

Azn(S) = (-1)nZ(-s)Z(s), (4z)

An explicit expression for AZn(S) can be

obtained in the following way:

Define

K = , (43)

where det K = 1, and argue that

A2n= det[ (SIzn - H)K]
= det (sI -A )det [ (sl + A* ) - C ( sI-A )-laa* ] =

= A(s )det (sl + A _ )det [l-(sl + A _ )-Ic (sl-A)-laa _¢] =

= (-l)nA (S)A(- s)det [I-{F*(-s)/A (-s )}C{F(s )/A(s )} aa _.

Application of (13) then immediately yields the de-
sired result

AZn(S) = (-z)n[A (s)A(-s) + a .P*(-s) C r(s) a]. (44)

The results (39), (40), and (4Z), (44)actually

apply when the roots of AZn(S ) are non-distinct and

when C is only non-negative definite, provided that

x. Cx is the square of an "observable" quantity.

This can be deduced from Kalman's nearly definitive

studies [12], [3], which combine Pontriagin's neces-

sary Maximum Principle [ 17] with the sufficient

Hamilton-Jacobi partial differential equation [9].

Kalman shows that the optimal control law for

= Ax+a(g.x) defined by the criterion (34) is given

by g = -Ba, and is stable if there exists a symmetric

B > 0 satisfying

BA + ASB-Baa_B = -C. (45)

Under these conditions, the function x-Bx is a

Lia_unov function for the closed-loop system

x=Ax; and B must be given [9] by

co

0e C-_"
B = xp(A_'t)[ +gg*] exp(At)dt. (46)

Furthermore, _= ¢(x o) - 1 o--_x -Bx ° and p=-grad¢ =

- Bx satisfies the necessary condition

max _(x, p, _o ) = 0 where

%
_:_ p ¢Ax+a%l (½)(xCx+%Zl. (4vl

Although Kalman suggests a method for finding

g explicitly (integration of a matrix-type Riccati

differential equation), a more efficient approach,

for (33), can be obtained by combining his work

with that of Letov and (20) above.

The results (45)-(46) are equivalent to (41), (44)

as can be shown by the following argument. Rewrite

(45) as B(sI-A)-(sI+A$)B = C-Baa_B. Premulti-

plication by -a_F $ ( -s )/A( -s ) and po stmultiplication

by (F(s)/A(s))a yields (after multiplication by

-A(-S)A(S) and substitution on the left of g = -Ba)

the result -a'_;F$(-s)gA(s)-g_F(s)aA(-S) =

a_l _ (-s)(C -Baa_B)F(s)a. Now adding A(s)A(-s)

to both sides and rearranging gives, after use

of (iz),

£(s)_(-s)= a(-s)a(s)+ a.r* (-s)cr(s)a (48)

which is exactly equivalent to (4Z), (44).

Note that since the _(s) determined from (48)

by construction must be Hurwitz, (46) must yield

a B > 0 if C > 0 and so (48) is totally consistentwith

(41). For a semi-definite C, additional conditions

must be satisfied to ensure that B > 0. Consider

the polynomial a .F*(-s)CF(s)a. Then for C >- 0,

a.r_(-s)Cr(s)a: aS(-s)_(s)where A_(S) is a

polynomial of degree _ -< n-1 (<n) whose coefficients

_i are readily computable. Now define a vector q

by the relation A_(s) = _.n=l_tisi-1 A= q" F(s)a. Then

= q. Sia, (i= l,Z,'",n), or (Sla,'",Sza)* q =

where _ denotes the vector of coefficients of A_n(S).

Applying (18b), it is clear that q = A_(A* )b. Thus

a. r*(-s)Cr(s)a -_ [q. F(-s)a][q • r(s)a]. (49)

This important result shows that, by(48), the matrix

C can be replaced in @ by a new matrix defined as

in (36) without affecting the determination of the

optimal control law. In other words, minimizing

the _ of (34) is exactly equivalent to minimizing the

simpler performance criterion

+co

' =<[(q.x) z + (g.x) z] dt. (50)

Then in (46), B > 0 unless for some x °#0,

(g.x) =- 0 and (q-x)- 0, 0_ < t <+co. Butin this

case, x(t) = exp (At)x ° = exp (At)x°whence the deri-

vatives of q-x at t= 0 become [(A_¢)i-lq]-x °,

(i: I,"%n). Now assume that q.x is observable;

that is

det[q,A_'q, "", (A*)n-lq] # 0. (51)

Then q • x =- 0 implies the contradiction that x ° = 0,

i.e., q-x_- 0 is impossible and B > 0.

As an alternative to (51) in checking that q-x¢ 0

when g. x=- 0, consider the following argument.

By (IZa) and (17), if _(d/dt)0 I=0, then

g-x =- 0 _ [g.l"(d/dt)a]01_ Z_(d/dt)81 = 0. (5Za)

Similarly, from (36) and (52a), wheng, x -= 0

is satisfied,

q-x -= 0 ==>A_(A$)b.x = &_(d/dt)O 1 = O. (5Zb)

Now, if A,,(s) isafactorof A(S) Afi(d/dt)8,=0

implies theft A(d/dt) 81 =O, in which case ¢SZb) holds.

Conversely, if the conditions of (52) are both satis-

fied, A_(s) must be a factor of A(s). This can be

shown directly if the eigenvalues {_i} of A_(s) and

those {ki} of A(s) are distinct. Making this assump-

tion, and recalling that A_(S) = II_=l[S-"ki] , the gen-

eral solution of A_(d/dt)O 1 = 0 is a linear combination

of the solutions of [(d/dt) -^ki]O 1 = 0, while a similar

conclusion holds regarding the solution of

A(d/dt)01=0 and those of [(d/dt)-ki]01 =0. This

implies that the _i,(i= 1, Z,.--,_) are included in the

ki, i.e., At(s) must be a factor of A(s).

In order to extend this result to the general

case, define a z_ (Co, al'.... , an_l )_`. Then
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the companion matrix C of A or A is defined as

usual by_ = (e_,, "",e n,-a)*. Now it can be shown
(cf. techniques of [10]) that, referring to (18b),

[q,A*q,-..,(A_')n-lq] _= L[_,_,_,...,(_,_-I_],

{det L = I/detD _0), (53)

where _is as defined after {48}. By controllability

and (18b), the observability condition (51) is equiva-
lent to

det[_,_'_,'",(_)n'l_] _ 0. (54)

Thus (54) is now sufficient to show that A_(s) and

Zi(s) have no common factors for distinct roots of

these polynomials. However det[_,_q,-..,(_')n-l_]

is a multinomial in }zi and _i only; thus it must be the

"resultant" ( the general condition for two

polynomials to have no common factors) and so (51)

is =,_Li_fied ifand only if _{s) is not a factor of

Zx(s).

It remains only to develop criteria for 5 to be
Hurwitz. which _re based on lecture notes distributed

by W.M. Wonham at Purdue University. [In these
notes, Wonhamoverlooks the necessity of a test of
observability of q. x. ] If the open-loop characteris-

tic polynomial A(s) has no purely imaginary roots,
(48) can be written as

[E(j,_lf z= tmj_)fZ+ fq.rIj_lal 2>- IAIj_)I z> 0,

-co<_<+_, j = _/:_.

This guarantees that none of the roots of AZn(S) are
imaginary; hence _(s) will be Hurwitz. Furthermore,
if

Sla. CSla > 0 (55)

is satisfied, an open-loop pole at ¢0= 0 does not pre-
vent _(s) from being Hurwitz since

IE(0)[Za0+]q •r(0)a[Z= (Sla).C(Sla) > 0. (56)

Thus if the open-loop system has no imaginary poles

except possibly at s=0, in which case (55) is

assumed to be satisfied, _(s) must be Hurwitz.

These concepts are now unified into an actual

design procedure.

(a) Choose an appropriate matrix C by the
methods of (35) or (36) above.

(b) Compute A(s) by Leverrier's algorithm (7).

(c) Find the roots of A(s) = 0. If A(s) has

purely imaginary roots (other than s = 0)
modify A until it has none. If A(0) = 0,
also check the condition

(Sla). C(SIa) > 0;

if it fails, modify C until it holds.

(d) As explained above (49), compute the

vector q= A_(A_')b such that

a • I_*(-s)C F(s)a -= [ q" F(-s)a][q • F(s)a] =
A
= A_(-S)a_(S).

(e) Find the roots of A_(S}= 0. If A_(S) is a
factor of A(s), modify C until it is not.

(f) Compute the polynomial AZn(S ) by the
following explicit expansion of (44):

n-1

A(-s)A(s = aZ+ _, _.sZi+(-l)nan2S 2n,
o i=l 1

i-1

a. = (-I)i¢_+2 (-i) (i=l,"',n-l),
1

J= (n > Z)max
10,2j-n)

(57a)

(57b)

a. r*(-s)Cr(s)a= (Sla) •C(SIa)+

n-Z

+ _ 'isZi+ (_if-l(a .Ca)sZn: 2
i-I (57c)

'i __a(_l)i(Si+la). C(Si+la) +

i-1

+ Z _ (-l)J(Sj+la). C(Szi_j+Ia), (i=l,..., n-Z),
J=

max (n _-3) (57d)
(0, 2i-n+l)

(g) Alternatively, Leverrier's algorithm can be
applied to the Zn × gn matrix H of (41) to

give AZn(S).

(h) Find the roots of AZn(S), and from the n
roots that have negative real parts generate

the unique polynomial A(s) such that
_Zn(8) = (-1)n_(-s)_(s).

(i) Insert the coefficients of _ into (ZO) to find
the desired optimal gain vector g. In
practice it is useful to compute a one-

parameter family of gain vectors, say

g = g(_o ), by replacing C with _toC,
0 < _o < +c°, and letting _to vary over the
positive real numbers.

Intrinsic Adaptivity to Actuator Saturation

In engineering practice, of course, actuators
are linear only over a finite range and have limited
amplitude. By renormalizing Hall if necessary, it

can be assumed without loss of generality that, in(8),

I%1 _ Po" (ss)

Hence it is of great interest to study the behavior of

(8) under the control law

= PoSat[%(g'x)/Po ], (59)

21< Po <+co, _< %< +co, (60)

where sat[e-]--a e_o o for 18-1-<o 1 and sat[%] = sgn[%]

for I%1 >- I. Note that if instead of (60) one requires

1 -<Po < +co, 1 -<_o < +_' (61)

then there is a clear physical interpretation to (59)

and (61); in fact,

F° = %(g. x), Ig.xl-- (pol%), (6z)
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" i. e. , the control law (59) is linear at least in the

region

IIxll -_(_o/%i)gll), (63)

while increasing _ > 1 is the same as increasing

the control _ain Ilglt and increasing p > 1

is th-ee s_-_e as increasing ' . othe actuator amplitude

IIa ll-
Use of (59) permits what seems to be the first

unified theory of linear, linear-saturating, and

bang-bang control. Clearly the extremes are

_to= 1, po=+¢0, {LINEAR CONTROL,_o=g.x) (64)

Po = l, )_o =+co, (BANG-BANG CONTROL,

_'o= sgn[g .x] )(65)

There are two important performance criteria

applicable to (8) and (59), namely

+co

_o = _0 [x-Cx + (g.x)2]dt, (66)

> 0 such that for some
and the largest number k ° .

yo >- I,

IIx(t)ll -< IIx°llYoeXp(-Xot), (0-<t<+¢0), (67)
whenever

llx° II "- (po/_ollgII). (68)
Referring to (45), and using x • Bx as a LiapUnov

function, it can be shown that if g = - Ba is computed

as in the procedure above, the system (8), (59), (68)

is asymptotically stable on (60), [Ix°l[<Z po/(¥o I[gll ).

Moreover, neither performance criterion _Ib or

k ° is_d b z_ Po' _o to varyon---q-61)' --

This truly remarkable property of the gain

vector g = g(a,A, C) obviously enhances the practical

usefulness of the design procedures developed above.

Conclusions

A unified practical algorithm for the design of

lowest-order [physically realizable] asymptotic

realizations of ideal optimal control systems is

obtained by combining the just-listed procedure

(a)-(i) with the procedure (a) - (f) preceding (32).

The authors have implemented this in a digital com-

puter program. Inputs to the computer are plant

matrix A; actuator vector a; sensor vectors hl,hZ. .--,

hm; performance vectors ql qZ,...,q_; trade-off

coefficients KI, K2,... ,K_%; and filter poles An_ v(s).

Outputs are optimal filter zeros A(i)(s), (i=l,-",m)
for asymptotic realization of the sys{em which (in

the mean-square) minimizes the performance index

Kl(ql .x12+ K2lqZ.x) 2+ -.- + K_n(qm-x) 2.

Appendix

R.E. Kalman has stated that he learned (13)

from [l][Z], but subsequently encountered instances

of its use by Caratheodory without comment (cf.[ZZ],

p. 342). Kalman has kindly supplied the following

proof, which is amusing, but technically less ele-

mentary than that given here. Since there must

exist (n-l) linearly.independent vectors u i orthogonal

to d, (I+cd$)u i = uZ+(d.ui)c = ui; hence I+cd* has

n-I eigenvalues ki= 1, (i= 1, Z,...,n-1). Now

k_+... +k • + k = (n-1)+k _- tr(I+cd*) = n+d.c

1 n-± _ n

whence det(I+cd ;) -= klkZ'"kn_lkn = k n = I +d • c,

Notational Conventions

a. Matrices are upper case letters.

b. Vectors are lower case unsubscripted or super-

scripted letters. Scalar product is. ;l[x[[2_x • x.

c. Scalars are subscripted lower case letters.

d. Exceptions to these rules are i, j, k, I, v, n,

which are used as summation indices or

scalars; s which is a complex scalar; A(S)

which is a polynomial in s; and t which denotes

time. Also _ and_are scalars.

e. The i th column of the identity matrix is

represented by e i.

f. The symbol _ denotes equality by definition.

g. The symbol m denotes identity.
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SUPPLEMENTARY NOTES ON ADAPTIVITY ANALYSIS

Assume that the control law for

= Ax + a, (t)

has been formed by the optimal methods of the previous section. The

effects of increases or saturation in the feedback signal or in the actua-

tors are considered here. In general, let

If ] g.x I _ P/_, or if @ --" co

.If Ig'xl ) P/" or ifu -_ _

? _ _/g.x . (3a)

t) _p sgn(g.x),

and so the possibility of linear and bang-bang control are inchded

in (z).

(3b)

EFFECT ON STABILITY

Asymptotic stability for a system

= f(x)

is ensured in the domain determined by V(x) < g where V(x) is a

Liapunov function for (4) and g is a positive constant if

V(x) < c ¢(x) < O.

(4)

(5)
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Now let

1
V = _x.Bx

(6)

be a Liapunov function for (i). Then

I
1 (Ax + a¢) • Bx + • B (A_ + a¢) (7)

Apply (2) and

l -'I¢

= _-x.(A B + BA) x+ x.Ba%'.

--C = BA + A B - g g':-_,

g = -Ba

to (7) and obtain

= - _x. Cx + _- (g x) z - P (g.x) sat \ o /

(Sa)

(8b)

(9a)

or

1 I
_-= _ _x.a_ - _ Ig.x I

The control _ is linear when

1.0 at(''--'')(9b)

T Ig'_ I <1"

Then (9b) gives

I I
W =-_x.Cx-_lg.xI

and stability is ensured if

(10)
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Similarly, the control is saturated when

--_Ig.xl>l.
P

(11)

Then

and

i , {_-_ _ x.C_ - _ Ig.x I

Ig.x] < 2p

(12)

(13)

is necessary for asymptotic stability.

To establish sufficient conditions for a region of asymptotic

stability in this case, consider the lemma

(x.Ba) 2 _ (x.Bx) (a.Ba), (14a)

where

B=B >0,

a#0.

(14b)

(14c)

Proof: If x and a are linearly dependent, the equality sign obviously

holds. Alternatively, if x and a are linearly independent, let

uA (x.Ba/a.Ba)a, v A x - u _ 0. (15)

By direct substitution

v.Bu = u.Bv = 0, (16)

and so

x.Bx = (v+ u) • B(v + u) = v.B v +u.Bu> u. Bu. (17)
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Thus by (15)

x.Bx > (x.Ba)2/(a. Ba), (18)

and the lemma is proved.

Now by (8b) and this lemma,

Ig.x] Z < (x.Bx)(a. Ba). (19)

Then if

(x-Bx) (a.Ba) < (2p) 2, (2o)

2
z 2p (21)

V = _x°.Bx ° < a°Ba

must imply that

fr < o, (zz)

and asympotic stability of (I) with saturated control will be guaranteed

in the region where

o 4p2 (23a)x •Bx ° <
a.Ba '

or equivalently where

2

x.Bx o <-4____p. (Z3b)
a.g

(See Table I at the end of this appendix. )
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EFFECT ON PERFORMANCE INDEX

co

_(xo) _ t f
Z

O

(x. Cx + (g.x) z ) dt (24)

Since from (9a)

1 1
_r [x.Cx [ (g.x) 2 + p (g.x) sat

(25)

(Z4) becomes

(x°) =

co

f
O

+,g.x,2_p sat}dt

=i o fz x ._x° - Ig.xl 01 sat I- Ig.xI
O

Thus the performance (in the sense of (Z4) is not degraded if

{pLsat 0
Now_ for

dt

(Z6)

(Z7)

(ZS)

(Z7) is valid if

which implies that ix >_ 1.

Ig.x I -< P

For

(Z9)

(30)

(Z7) is valid if

>_ 1
(31)
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"which implies that

Ig'x! <- klg'×l-< p (32)

Summary of Results

-Always sufficient for system stability

-Always sufficient for undegraded

performance index

Control is pure linear if

Control is bang-bang if

> 1/2;

kt>l;

x. Bx<

xl

_lg.×l < _,

_ Ig.,:l >r,

-4p 2
a.g

_< p
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ON SYNTHESIS OF OPTIMAL BANG-BANG FEEDBACK CONTROL SYSTEMS

WITH QUADRATIC PERFORMANCE INDEX

R.W. Bass and R.F. Webber, Guidance and Controls Division, Aerospace Group

Hughes Aircraft Company, Culver City, California

Ab s tr

This paper extends the work o£ Wonham and

Johnson [1], who found the nature of the optimal

control on the singular strip for a given quadratic

performance index. Their solution required a spe-

cial preliminary transformation to phase coordi-

nates. In this work the optimal control is found, on

the singular strip and in a neighborhood thereof,

without the use of their special transformation. The

optimal control law off the singular strip takes the

form sgn _(x), where _(x) is a power series in the

state vector, x. The terms of _(x) up to and includ-

ing those of the third order are found.

Introduction

The work [i] is extended in several ways:

(i) Avoiding the change from state-variables to

phase coordinates gives the present work complete

generality, which is mistakenly claimedby [1]: the

alleged reduction of the integrand of the quadratic

performance index to a nonnegative definite weighted

sum of squares in [1] is incorrect, in that some of

the weighting coefficients may be negative, as

simple examples show.

(ii) Computation of the plant's open-loop poles

is avoided: the "singular control" gain vector is

derived in terms of quadratic matricial equations

closely related to those of optimal linear control;

(iii) The nature of the singular regime (linear)

control in an (n-l)-dimensional strip near the origin)

is completely explained by exhibiting a linearly

switched bang-bang system, optimal near the origin,

whose chattering regime [2] gives an average motion

(the Andr_-Seibert _ _*) which is

identical with the singular regime;

(iv) A method for computing the coefficients of

a multiple power-series in the state-variables

which provides the local optimal control switching

signal as an explicit feedback law is developed.

In [i], the optimal nonlinear control law is

described implicitly by means of the familiar

Hamiltonian Two-Point Boundary-Value Problem

[4], whereas the present approach leads to an ex___=

plicit solution of the equivalent Hamilton-Jacobi

equation.

Principal Results

Let the system to be controlled have the state-

vector form

x = Ax+aqJ o, x(0) =x °, [A=(Aij), a=(ai) ] (1)

where the feedback control law q_o = %bo(X) must
satisfy

[*o j -< 1 (2)

and, for some free terminal time T, 0-<T$+_,

x(t)--0 as t--T, (3)

*Kliger [10] calls it the _ _.

while at the same time minimizin_g the performance

index
T

@ = ½f0 (x.Cx) dt, (C = C*> 0) t (4)

where C is a given positive-definite symmetric

matrix.

We shall prove that, in a sufficiently small

neighborhood of x = 0, the optimal feedback control

is precisely

% = sgn[o'], _= g.x, (5)

(where as usual sgn[¢] -= _/[_[), where the gain

vector g is defined as follows.

Let

A
P = I - [1/(a'Ca)]aa*C, (6)

n
A

so that P is a "projection matrix" with the properties

(_)z: ^ ^ t_)*Ca 0.P, Pa = 0, = (7)

Let

B = B* >_ 0, det(B) = 0, (B)

be a non-negative definite, singular symmetric

matrix satisfying

A
B(AP) + (AP)*B - [l](a. Ca)] B(Aaa*A*)B =

= -c + [l/(a.Ca)]Ca*C, (9)

as well as the constraints

Ba = 0, (10a)

(Aa). B(Aa) = - (Aa)" Ca .'#'_-_ (10b)

It was established in [ i] that the condition of

controllability [see (40) below] together with C posi-

tive definite are sufficient for (9) to have a solution

B with the properties stated in (10).

Then the desired g will be given by

[g = - (1/_)(BA+C)a, [ (lla)

which, by (8) and (10a), has as a corollary

a.g = (lib)
0.

It should be noted that, by (llb), and [Z], use of

the control law (5), (11) must always lead t.o an end

o2_9_ x 1, namely, a time T,> 0 and state x I such"

that

g.x l= O, I(A*g)'xl[-<-a-g= [a'gl, (lZa)

x(T,) = x 1 (IZb)

As first noted by Fl(igge-Lotz [3], the solution

x(t) of the system (i), (5), (ii) cannot be defined

tThe notation of this paper will correspond as

closely as possible to that of [7].
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for t >T., because the relay @o = sgn[_r] wouldbegin

to "chatter" at ¢=g-x I. This difficulty was over-

come in an elegant theory by Andr_ and Seibert [Z],

who assumed a small time-delay r in the relay,

namely _b(t)= sgn[cr(t-T)], and derived the limit-

motion x(t), for 0 < T.<t<+_, as T_0.

It turns out [2] that this sliding motion takes

place in the hyperplane-strip

g x=0 J(A*g)xi-<-a.g, (x=px), (13)

and is defined for T.-<t<+ °° by

= PAx, x(T.) = x 1, (14)

P = I - [I/(a.g)]ag*, (15a)
n

Pa = 0, P*g = 0. (15b)

Note, however, by (15a), that

PA = A -[l/(a.g)]ag*A = A+a(-[1/(a.g)]A*g)*, (16)

and that, by(13), ([A*g.x[/la'g[)-< 1.

Hence the sliding regime can be regarded (and,

using dual-mode control, synthesized), as alinear

control system of the form

= Ax+ a$o , g.x = 0 , x(T.) = x 1 (17a)

$o : q'x, I_oI-< i , (17b)

q = -A*g/(a.g) _-_,_ (17c)
U

We shall prove that the system (17) is asymptoti-

call ,_ stable on g.x = 0, and that

= (x. Cx)dt = xl.Bx 1 , g.x = 0 (18)
_* ,

where B is given by (9) - (10), and where the feed-

back law $o _A q .x actually minimizes _. under the
constraints 1_ol < 1, g.xl= 0. Furthermore it will

be proved that (17) is identical with the _ular

re_.._ime of Wonhamand Johnson. [ADDED IN PROOF.

Since this paper was accepted for presentation, the

comments ['0] of Kliger have appeared. Kliger

makes a statement similar to point (iii) above, con-

cerning implementation of the singular regime by

means of a chattering regime. However, he does

not mention the Andr(_-Seibert theory {14) - (15),

and fails to prove the all-important results (1 lb) that

a • g < 0 and that the system (1"/) is asymptotically

stable on g-x = 0, which wii1 follow from (2Z)below;

the arguments of [ 10] do no more than prove that if

a.g < 0, the system (17) has end-points [Z, 3] which

is necossargfor stability but not sufficient.]

Firstiy, rewrite (11) as

(a-gig= (BA+ C)a, (a.g)2 = a.Ca .] (19)

Now, using (19), and inserting (6) into (9), re-

arrange (9) to show its equivalence with

BA + A*B = -C + gg* . (Z0)

By (10a) and (16),

BPA = BA . (21)

Hence (Z0) can be expressed as

B(PA) + (PA)*B = -C + gg* .] (2Z)

Also, by (14) and (15b),

t(g.x ) = g.:} = g. PAx= (P*g)-Ax = 0 ,

so that g.x I = 0 implies that

Multiply

and note

By (14),

whence,

(z3)

g.x(t) =_ 0 , (T._< t < +_) . (Z4)

(ZZ) on the left by x* and on the right by x,

that, on g.x = O,

• . : x. Bx . (ZS)

(Z5) implies

Se = x.(BPA + A*P*B)x = -x. Cx , (Z6)

integrating, one obtains

t

x(t). Bx(t) = x I .Bx I - JT.(X" Cx) at ,
(ZT)

which shows that, on (Z4), x(t)--0 as t--+ °°. This

proves {i8). The mlnlmality of (18) was proved by

Wonham and Johnson; hence, it remains only to

identify (17)with their singular regime, which can

be done by comparing (18) and (19) with the equa-

tions (Z3), (Z7), and (35) of [1].

By (19) and (17c),._ * ._,1_,_

q = -[i/(a. g)]A*_='-[I/(a • g)]Z(A*BA + A C)aA(Z8)

Hence, using (Z0) after multiplying on the right by

A, (Z8) gives

(a.ea)q = -(A*BA + A*C)a_- X_,._)=

= (BA Z + CA - A*C)a - (g.Aa)g4_(Z9)

or

[(a. Ca)q= (BAZ + CA _ A*C)a I (30)

if

[g.Aa:'l.. <3l>
But (31) is a consequence of (10b) and (19). Hence,

(Z9) holds. The equations (19) and (30) give g and q

according to [1], while the preceding argument has

shown their consistency with (17c).

It is easy to give a direct proof that (17), (19),

(ZZ), (30), (31) correspond to singular control. By

(1) and (4), and the Maximum Principle [4], define

a Hamiltonian by

= x.A*y+ (a.Y)_o - zxl "Cx. (3Z)

The Hamiltonian canonical (variational) equations

associated with (3Z) are

:k = Ax + a_ ° = grad(y)_ Z, (33a)

= -A*y + Cx = -grad(x)_/2, y(T.) = yl (33b)

Singular control occurs when _-- 0 by virtue of,

separately,

a- y - 0 , (34a)

x.A*y -= ½x" Cx. (34b)

Now assume that

y = -Bx , (a. yl = 0 , Ba = 0) . (35)

Clearly a. y = -a. Bx = -(Ba)-x =- 0.

Similarly, by (Z0) and (35), equation (34b) holds

on the strip (13). But we have already proved that
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A

_3° = q'x implies that the system (33a) is asymptoti-

cally stable on (13). Furthermore, by (31), (19),

,and (30), equations (33a, b) and (35) imply that

a • 9 = (a . g)(g. x) , (36a)

a.y- [(a. Ca)q - (BA z + CA - A*C)a].x =- 0.(365)

i
Hence g.x = 0 implies that a'y=-0, whence (35) is

in fact a solution of (33a, b)-(34a, b) for _o = q. X.

Optimal trajectories outside of the singular

strip (13) can be obtained by the floodinq_ technique,

as noted in [I]. Since application of the results of

[I] require a special coordinate system, whereas

the present formulation is completely general, the

flooding procedure will be described in the present

notation. (A discretized version of flooding is well

known as D__Irnamic Programming [5]. ) Since a- y is

to vanish only at isolated times, the Maximum

P_! i__ [4] is applicable. The optimal trajec-

tol,es leading to the singular strip are generated by

starting on the strip and integrating the Harniltonian

(canonical) equations backwards in time. If the

terjminal state x I is an arbitrary point on the

singular strip, then the corresponding terminal co-

state yl = -Bx I is known by the preceding charac-

terization of the matrix B. The (optimized)

Hamiltonian is therefore

_+=x.A*y+ la-yl" ½x Cx, (37ai
where the result

<ho = sgn[a.y] (37b)

is a consequence of a.y # 0; now integrate

-]_ = Ax + a sgn[a, y] = grad(y)_, x(0)=x I, (37c)

-# : -A*y+Cx: -grad(x)_, y(0)=yl= _Bx I,(37d)

for 0 _< t < + m. Every state x(t) attained in this man-

ner will have as its co-state the associated y(t), and

the optimal control value d_o : sgn[a, y(t)].

The preceding _method (37) is just a

technique for solving the Hamilton-Jacobi partial

differential equation, _/= 0, by the method of

characteristics. In fact, outside of the singular

strip one has

_o = sgn[a.y] = -sgn[(a.grad q>)] (38a)

y = -grad(x)_ , q_ = _(x) , (38b)

= -Ax. grad • + [a.grad _I - i Cx m 0. (38c)_-x.

These equations can be re-written in the form

(Ax + a%). grad _ = - Ix" Cx, (39a)

e = -sgn[a.grad _] (CoZ = i) (39b)
O ' '

grad • = Bx when g.x = 0 , IA*g.x[ <_ la. g{(39c)

where, in the notation of stability theory, (39a) is

equivalent to

4= l- 7x. Cx, (39d)

namely, _ is a positive-definite _unov function

whose Lie derivative is the negative-definite function

- (I/z)x . Cx, and where the integration of the partial

differential equations (39a) - (395) is to be per-

formed subject to the boundary conditions (39c).

Numerous publications in this field have stated

that explicit solution of {39) is a "hopeless u task.

However, by using some new results of Bass [6]

(see also [7]- [9]), the partial differential equation

(39) can be solved explicitly in a neighborhood of

x = 0, as will be shown.

The computation of certain auxiliary vectors

and matrices is a preliminary step.

Define the controllability matrix (Kalman) by

D = (a, Aa, AZa,...,An-la) (40)

and assume, as was done implicitly in assuming

solubility of (9) - (10), that det D#:0. Then a vector

b exists which is defined by

b=(D'l)*e n , (D'b= en= (0,0,...,0, i)*). (41)

By definition, b has the property that b.Ai-la -

[(Ik*)i-lb].a = 6in. (Snn_l;Sin6_-0, i_n.)

It can be shown [ 7 ] that if one defines a phase

variable 0 1 by setting

81=b'x , (8_ i] : diOl/dti:[(/k*)ib]'x ,

(i = 0. i, '' .,n-l)) (42)

then the system (i) is equivalent to

A(d/dt)01 _- _i0[1 i] = ¢'o ' (43)

i=0

(which is in terms of the phase-coordinates 01,

01, ' • " , @ 1 [n - 1] , in s te ad o_ th--_ s tat_ va r iab_e s"

Xl,..., Xn) where the cq are defined by

n

A(s) = det(sI n -A) = _c_isi , (44)

i=0

and where the inverse of the change of variables (4Z)

is given explicitly [7] by

x = {F(d/dt)Ol}a-= _ 0_i-llSi a , (45)

i=l

F(s) =- isi-lsi " (46)

i=l

Here, if _denotes Laplace transform, and s the

complex Laplace variable, the polynomial A(S) is

the open-loop characteristic polynomial of (1), and

the matrix F(s) is the numerator of the open-loop

matrix transfer function G(s), which is given by

G(s) - (sl n - A) -I = ¢_{e At} _ (47): _(s) '
where the theoretical definition of the matrices S. is

1

n

= ___crjA j-i (i = 1,2,-..,n) . (48)S i

j=i

The definition (44) requires n_ multiplications and

for large n cannot be used to compute a i. However,

the coefficients oi and matrices S i can be computed

in about n 4 multiplications* by the algorithm_ :

*For example, aHughes computer subroutine finds

(a i,Si) for a 10 X10 matrix in about 5seconds of IBM

7094 time. J" Leverrier (1840); cf.[7].

!
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= I, s = I , (49a)
n n n

¢_n-j= -(i/j) trace (AS n_j + 1) ' Sn-j = C_n-fin+ ASh-j+ 1 '

(j = I, Z,'''_n) (49b)

whose accuracy can be checked by the _fact that

S o - 0 should hold (Cayley-Hamilton theorem).

Now define vector transfer functions v(s}, u{s)

by

°iv(s) = F*(s)b = _ si-lak(A*)k-ib =

i= ] k=i

n n

j= l\k=j /

n n .

w'_ I-^1 - 1]ajAJ _iarls)a/"(s) = ZLi J :U(S)

i= 1 j=i

----n/ n
= 7\Tak AJ-la , (51)

j=l k=j

and note that (by the Cayley-Hamilton theorem which

gives (si n - A)F(s)- A(S)In), the following results
are identities:

A*v(s) a sv(s) - A(s)b , Au(s) = su(s) - a , (5Za)

v(s).a - 1 , u(s).b E i/A(s) . (5Zb)

Also, it can be proved [7] that

•., = S'b)* (53)D- I _= (a, Aa, . A n- la)- 1 (S;b, • •• , n '

and, analogously,

(b,A*b,-.., (A*)n-lb) -1 = (Sla,-.',Sna)* • (54)

Hence, if the vector transfer functionw(s) is defined

by

W(S) = (Sla, -'',Sna)*v(s) , (55)

it will be true that [multiply (50) by (54)]

n n

j= l\k=j

where the ej are the fundamental unit vectors

(in = (el, . .., en)).

Next, compute a sequence of numbers {_i }

recursively by

_-v = 0 , (v = l,Z,...,n-l) ; {30 = 1 , (57a)

v-I

_v = - _ai+n-v_i ' (v = I, Z,''',n) (57b)

i=0

n+v- 1

_n+v = " _. _i_v_ i , (v = I, 2, 3,''" (57c)

i=v

and note the resultant identities [7], [8]

co

- ___js "(n+J), (for Is[>9odefinedby(66) ) ,(58)I/A(s)

j=0

b'A j-la = #j_n ' (J = 1, Z, 3,..-) . (59)

Define a new set of state variables ¢bi = _i(x),

(i = I,Z, ...,n), by

D-lx = (¢1' 6Z' " " "' _5n)* ' (60a)

and note that by (53) and (42),

x = i% Ai- la ' _i = (S>).x , 01 = _n " (60b)

i= 1

Further note that by (46), (50), (53) and (60a),

n

_ i-1 (6l)to(S ) _ v(s).x = ¢i s

i=l

£4nce s is an mrbitx-&i y t.u_11pi_x variable, (6i) is

equivalent to the set of conditions obtained by

equating the coefficients of like powers of s, i.e.,

(61) is just a condensed statement of (60b).

Now multiply (i) scalarly by v(s) and use (5Za)

and (42) in order to verify that if x = x(t) satisfies

(1), then to = _o(s,t) = v(s).x(t) satisfies

d_o(S)/dt = S_o(S) + q_o - A(s)qbn " (6Za)

Again, (62) is just a condensed statement of the
differential equations

$I = -CYogn + d_o ' (6Zb)

$i = 6i-1 - ai-ld_n ' (i = Z, 3,.-.,n) , (6Zc)

obtained by equating coefficients of like powers of
s.

The motivation for the preceding derivation of

(62a) is that, in the special case when the roots

kl,...,k n of A(S) = 0 are distinct, one can define

v i=v(×i) , u i = {[Z_(s)/_'(s)]u(S)}s=Xi ,

(i= 1, Z,''',n) , (6Zd)

_i vi= .x = &(k i) , (6Ze)

and obtain from (52),

A*v i = X.v i v i'a = 1 ; Au I = kiu _
1

i
u -b = 1/Zh'(ki) , (i = 1, 2,''',n) (6Zf)

while (6Za) becomes the Lur'e canonical form

_i = kiwi + ¢o ' (i = 1, 2,''',n) . (62g)

Thus, (62a) is a generalization of the Lur'e canoni-

cal form, valid whether the roots ki of A(s) are

distinct or not.

Next, assume that qJo is piecewise constant,

and, in particular that

¢oZ = 1 , ((o = +l or _o = -1) . (63)% (O
J

If _o satisfies (6Z), (63), it will henceforth be called

to = _o(S;_o ) • Define a function

K = _(s,_o)= (%/s) log [l+ %S_o(S;%)] , (64)
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and note that K is analytic in x i for

llxl]< 11%V(po). Isl -<0o, (65a)

n n

j=l k=j

For future reference, choose

Po > I]AI] (-" max l×i] , a(>,i)= 01. (66)
i=l,''',n

Referring to the n new state variables _i = (S;b).x

of (60) and (6Zb, c), note that they can be related to

the state variables x i and phase coordinates

81[i-I] (i = i, Z, • • • , n) by the following explicit and

uniquel'y invertible transformations [7] ,

qbi = iaje[ j-i] ' (i= 1, 2,.-.,n) , (67a)

j=l

n n

i=l i=l

i-1

0_ i-l] = _jO_j+n_i+ I , (i = l,Z,.'-,n) , (67c)

j=0

and that the function t((S,_o) can be [8] expressed in

terms of the _i = _i(x) as follows• Define _i =

c0i(X, eo) recursively by

,.0 1 = 61 , (68a)

v-I

£o !_v = 6v - -6- (v - J)_v-j*j

j=l

v-I

= cbv -v jcoj_u_ j , (v = Z, 3," "" ,n) (68b)
j=l

n

( O K _

= nTv _ (n + v - j)'-0n+v_i* i =C°n+ v

j=l

n+v- 1

= - e° " (v= 1,Z,3,-..) (68c)
nYv ! J_°jqbn+v-j '

j=v

Then it can be proved [6], [7], [8] that

_(S,6o(S;eo) ) -= (eo/S)lOg[1 + %S_o(S;%)] =

(68d)

Now we are in a position to define certain very

important functions _j = ej(x;%) by

1 {I _J_t21,
oi = oj(x;%) = ZTr'_" s I=%la(s)i'_ts' _°(s;%)) ds ,

(j = i,Z,..-,n) , (69)

and note that the Cj(x;_) are analytic in x on (65).

Using (58) and (68), it is easy to prove by the

calculus of residues that

co

_j(X;Co) = l_i_i+n-j+l (x'eo) =

i=0

= 0_J-q +o(ll_ll z) =

= [(A*)J-lb] .x-}%(x. Qjx) + o(llxll 3) , (V0a)

Qj = (A*)J-IQI ' Q1 = (D-I)*ED-I , (70b)

where the i,j t-h element of E is defined by

i

• EeJ = _i+j-n ' (i,j = l,Z,''',n) . (70c)
e

When the k. are distinct,
I

i __!__1lvi
b = A,lkilI, . (70d)

i=l

n

QI I hi I i, i,*= IA,---7_-_.l v tv # • (70e)

i=l

Now define the nonlinear vector function

p = p(x;%)

by

p = p(x;%) = (¢l(X;%),''',%(x;%))* , (71)

and note that

p = p(x;%) = (b,A*b,''', (A* )n - lb )*x + o¢llxllz) . ¢7z)

Consequently, the transformation

= p(x;%) , _- (_l'_2'''''_n)* ' (73)

has a unique inverse

X = h(lY,(O) = (Sla, •" ", Sna)0" + o(II_II z) (74)

for all llxll sufficiently small. It can be shown [8]

that this inverse is given explicitly by

I _s e°= h(_;%) = _ i=%s{eXp[%w(s)-¢]-l}u(s)ds:

1

Z_r4YY
%1 /-J (Vb--l .hds,

exp u - _Z-.LA(s)J l]

isl=r>ot L j=l Xi=l "

(75)

and that the transformations (73) - (74) are reci-

procal for aii x on (65), i.e., that

x - h(p(X;£o);_o) , _ -_ p(h(_;%);%) (76)

for all l]xll< i/Po_(Po). Furthermore, it can be

proved [7] that

det(hm(0;c)) = det(D) , (77)
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which re-emphasizes the fact that the condition of

controllability det (D) _ 0 plays an essential role in

the construction of (69) - (71), and (75) as reciprocal

transformations; in other words, controllability is

sufficient for the functions c_i = c_i(x;(o) of (69) - (70)

to be "functionally independent". _

The significance of the 0-.'s is that crl, _rZ,''',

Crn-l are first integrals of J

Z

k=Ax+ a% (% = i) (78)

while _n is an isochrone [8]. That is, by sub-

stituting (78) - or its equivalent, (62) - into (64) "and

(69), it is easy to verify that

O, j= 1,2,...,n-1&j(X;Co) _ dej(x;%)/dt = c 6 = (79)
o jn I, j n.

Another interpretation of (79) is the equivalence

[_ = x = h(z) ¢=> & = c e n o-= p(x). (80)' ' o

In other words, the nonlinear change of state

variables

xi = hi(Crl' "'''_n;Co ) ' o-i = Pi(X;_o ) '

(i = l,Z,''',n) , (81)

rectifies'thephase-portraitof1781forIIxll-_
I/p o 9(@0) by transforming the "streamlines" of

(78) into parallel straight lines.

Using (80), it is possible to solve the Hamilton-

Jacobi equation

$- (Ax+ = -_(x) , _(0) = 0 (SZ)a_o) ' grad(x)_5

by noting its equivalence to

{_ _ coen.grad(0_) _ = -_(h(o-)) , _(0) = 0 (83a)

8_(crl, " • • , Cn)/0gn = -%_(h(oi, " " "' _n )) " (83b)

In the present case,'Ig= (l/2)x. Cx. Hence the

general solution of (83) is [dearly 8¢o/8Cr n _ 0]

= _o + ¢1 ' (84a)

_o = _o(°-l'gg'''''o-n-I ) ' _'i = _I(GI '" "_'°n) (84b)

%

_1-- - (L/z) eofn[h(_rl''" "¢n-l'Zn ) " Ch(o-l"" "'¢n-l'Zr_]dZn'
v

(84c)

where _o is an arbitrary function.

It remains only to specify _o = e#o(o-1, "'" ,o-n-l)

in order to have found the solution of (82) as

= #o(_l(X;_o), ''-,_rn_l(X;Co)) +

+ qbl(Crl(X;_o), "'', 0-n(X;_o)) . (85)

However, the preceding theory of the singular

strip has shown [(1) - (37)] that if

¢o = 0o(X) = _o for 0 <_ t -< T, , and

g-x(T,)=0 , [A*g.×(T,)[ _< [a'g[ ,

and

¢o q'x q -(a" g)- 1 .-I"1_ _
= , = A g_for T.< t < + m ,

then [integrating (82) for 0 <-- t -_ T, and adding (18)]

+m

= _(x°) = l-f0z [x(t)-Cx(t)] dt (86a_

is an expression for the solution of

- (Ax + a¢o)'grad(x)_ = - 0/z)x'Cx (86b)

in a neighborhood of the points {x(t) I0 -< t < + co}

Hence (by the "Principle of Optimality" [5])

_(x 1) = ¢(x(T.)) = (ffz)x l'Bx 1 (87)

and so (85) must have the boundary values

_(x) = (1/z)x. Bx, when g.x = 0,

]A*g.x] -<la" gl (88)

By (74) and S n = In ,

x = h(Crl,-'',0- n) = (Sla)o- 1 +'''+ (Sn_la)0-n_ I + actn +

+ o(llpllZ), 189)

whence, by (llb)

g.x = (g. Sla)o-1 +...+(g.Sn_la)o-n_ 1 - (_-T-_)_ n +

+ o(llpll z) . 190)

Since a. Ca # 0, the standard expression for the

reversion of power series applies to give an analytic

function _n = _n(o-I '''''o-n-1 ) such that

g.x = 0 <===> _n ....®n(o-I ' , 0-n_l) , (91a)

_n = [(g" Sla)/N/-_'--C-a]o-l+""" +[(g" Sn-I a)/_-aq-'-'-'-'-_a]o-n-I+

+ O(1[o- - 0_nenl[Z ) . (91b)

Hence if [Ix[[ < min(i/PoQ(Po), [a. g]/[[Aeg[] ), the

desired function _o is [by (88) and (91)] given

explicitly by

_5o= (I/z)h(_l' " "" '°'n-l'_n)" Bh(Crl''"' _n-l' qbn) +

- _i(oi, ...,_rn_l, _n ) • (92)

Using (84) and (9Z), we may define an analytic

function

o-o = o-o(X;Co ) = a.grad(x)_ , _ = _o + _1 ' (93)

such that. by the Maximum Principle, in the regions

c # 0 it will be true that
o

Z 1) . (94)
= -sgn[_o(X;Co)] , (% =o

Note that _o is a multiple power-series jointly

in the (n+ I) variables _o and xi; because %2 = 1, the

series for _o can be collected into the sum of two

series having the form

% = %(×;%)= Ao(x ) + %_o(X) , (95)

where Ao(X) and So(X) are analytic functions of x,

independent of c o. If the inequality

_m <lFo(X)l_< [_o(X) [ (96)
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defines a region which contains a neighborhood of

x=O (i.'e., Ilxll< Yo' for some Yo > 0), then in this

neighborhood (with its intersection with the singu-

lar strip deleted) the optimal control law will be

given by

% = - sgn[%(x)] . (97)

An alternative approach to finding the switch-

ing function makes use of the fact that, outside of

the sin u_ strip, the switching surface must be a

first _i of [78 ,_-foT an appropriate { = ± I.

Hence the surface must be given by branches of

A

¢(x;%}_ ¢(_l(X;,o),...,__l(X;%))= o, (98)
A A

where _ = _(21, • • • , Zn_l) is a suitable analytic func-

tion. (Just us_ (82), with q?-= 0, to get _=0.) The

function _ can be determined from the obvious

boundary condition that the set of (ri such that

A

• {0"I, • • • , 0-n_l) = 0 , _n =_n((rl' " " " ' _n ) (99a)

must contain the set ("edges" of the singular strip)

Wrl : Cn(0-1 , ' • ", Wn), (A'g) " h(0-1, .. • 'ffn-l'_n } = ± (a. g).

(99b)

Hence we can choose

A

¢±-= (A*g)'h(*l'''"%-l' Cn(5"'"_n-1 ))±(a'g)"

(i00)

The use of (93) - (97) will now be illustrated by

an explicit power series expansion through terms

cubic in the x..
1

Using (74), (91b), and (70a), we have from

(93) and (54)

% : e n grad(_)@ = _)¢l/8O-n : - _,.,ll"_(_[_". ,'_t-w%_)) =

: £ :
i=l j=l

A

= % + {o_o (i01)

where [after some algebraic manipulations]

% : - (I/z}x" Cx + o(llxll3), (i02)

n
A X-'

o(llxl14}.% = - ?_(x.Qix)([csia].x}+ (i03)
i=l

Assuming now that the lowest order terms de-

termine the relative signs of _o and Ao, it is clear

from (93) - (97) that

% = sgn[i(x'Qix)([CSia]'x)]'i=l (104)

whenever

 l ixoixI o

Conclusions and Epilogue

The properties of the optimal control in a

neighborhood have been described. This control is

obtained by using certain closed form nonlinear

transformations• The method is an analytical ver-

sion of obtaining optimal trajectories off the singu-

lar strip by the method of flooding• It should be

emphasized that the solution to the problem pre-

sentedis local in nature and could be investigated by

simulation to find out empirically its global validity.

The authors have recently discovered how to

find the optimal control for stable plants off the

singular strip for performance indices of the form

T

f _2v(x)dt,

0

2v

where q_Zv(X)__O, v= Z,..., and qJZv(Px)= _ q_Zv(X).

That is, @? 's are positive semi-definite homo-
. _%) .

geneous multxnomlal forms of degree 2v. It is

interesting to note that the optimal control off the

strip in this case is of the form

- sgn[a • grad(x)¢Zv (x)]

where _5Zv(X ) is a positive semi-definite homoge-

neous multinomial form. That is, the argument of

sgn consists of only one term of a power series and

no___/tan entire power series. These topics will be

discussed in a forthcoming article.
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APPENDIX E

ABSTRACT

FOR

OPTIMAL NONLINEAR FEEDBACK CONTROL DERIVED FROM

QUARTIC AND HIGHER-ORDER PERFORMANCE CRITERIA #

by

R.W. Bass and R.F. Webber

Just as minimization of quadratic performance criteria leads to

linear feedback, so it is shown here that minimization of integrals con-

taining quartic or hexadic terms in the state variables leads, respectively,

to cubic or quintic feedback. This idea is extended to the minimization

of integrals of arbitrarily higher order combinations of the state variables,

which is desirable in order to impose inequality constraints upon the state

variables. Such laws are shown to be adaptive to actuator saturation

(including even bang-bang operation). These results are proved by

exhibiting a closed-form solution of the corresponding Hamilton-Jacobi

equation, which also provides a globally valid Liapunov function. Prior

results of Kalman, Haussler and Rekasius appear as special cases. A

new constructive procedure for computing the coefficients of the higher

order feedback terms is also presented, together with a numerical appli-

cation which illustrates remarkable effectiveness in the reduction of

overshoots as compared to optimal linear control.
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OPTIMAL NONLINEAR FEEDBACK CONTROL DERIVED FROM

QUARTIC AND HIGHER-ORDER PERFORMANCE CRITERIA ¢

by

R.W. Bass

University of Colorado and Hughes Aircraft Company

Introduction

The problem of state-vector feedback control

of autonomous, completely controllable linear

plants is considered. It seems possible to

generalize the following results to multi-channel

controllers, but here only a single control vari-

able will be considered. The results derived

herein are a natural generalization of results of

_&x*H,_l- for quadratlC performance criteria and

of results of Haussler 7 and Rekasius 8 for quartic

performance criteria.

The present point of view is somewhat differ-

ent from that of Haussler and Rekasius. Whereas

they seek to minimize a quartic criterion subject

to a mean-square constraint on the amplitude of

the control variable, we impose an additional

mean-square-amplitude constraint, namely on

what turns out to be the nonlinear feedback part

of the control variable. To this problem anexact

(not merely "sub-optimal") solution is obtained.

By noting that the lower-bound of a nonnegative .

quantity in the present work is zero, The

Haussler-Rekasius quartic upper-bound follows

from the present results, while their lower-

bound in this context is a consequence of the

well-known results on quadratic criteria. There-

fore the Haussler-Rekasius results on quartic

criteria constitute a genuine corollary of the

present completely general results.

The present generalization does not seem to

be trivial, however. Firstly, the method 7, 8 of

regarding a quartic form of degree n as a sum of

N=(n+2)(n+3)/4[ squares of quadratic forms

seems to us algebraically awkward and more

cumbersome to apply numerically than the

present technique, as well as unsuited to exten-

sion to hexadic and octic forms. Secondly,

although the first part of our Theorem 1 can be

derived using the Haussler-Rekasius approach7,8,

their measure of "sub-optimality" seems to us

unconvincing because for arbitrarily large initial

conditions not only the absolute difforence _ - __

between their upper and lower bounds on the per-

formance criterion #(namely _ _ _ <- 9) can be

made arbitrarily large, but even the percentage

difference [(_/_)- 1] can be made arbitrarily

large; and so the formal reason advanced by them

for choosing such a control can be made arbi-

trarily irrelevant (despite their excellent success

in a numerical exampleS). In fact, the striking

success of the numerical examples given by

Rekasius 8 for n= 2 and by ourselves below for

n= 3 seem to be interpretable more conveniently

in terms of an optimality attained than a "sub-

optimality" which turned out to be better quanti-

tatively than one had any previous, rigorously

valid reason to expect.

Culver City, California, U.S.A.

and

R.F. Webber

Hughes Aircraft Company

Culver City, California, U.S.A.

Practical Motivation

This investigation was motivated by a desire

to consider the minimax criterion of optimality,

nam ely

rain max q)(x(t) ) (1)

t

where q0(x) denotes a nositiv_ d_¢_-_te sc_!_r func

tion, x the state vector, t time and _ the control

to be chosen. In practice this criterion may be

approximated by the criterion

(x(tl) at ,min

(2)

for large integers _.

Correspondingly, one is led to the general

problem of minimizing performance criteria of

the type

+o=

_(x°) =/0 _(x(t)) at , (3)

where _ is a finite or infinite sum of positive-

definite homogeneous multinomial forms of

degree 2v, (v= l, 2, 3, ...), which constitutes

the subject of this paper.

Notation will be established, certain known

results reviewed, and certain constructions of

multinomial forms defined. Principal results are

stated in the form of two theorems, whose proofs

are given in Appendix 1. An effective numerical

procedure (leading to a computer-oriented system

design technique) for finding the required coeffi-

cients of higher-order forms is derived in

Appendix 2. This design procedure is applied to

a third-order numerical example and the results

of a computer simulation of the resulting system

are presented in Appendix 3. Conclusions follow

the main text.

Preliminaries

Vectors are n× 1 columns unless otherwise

stated; vector or matrix transposition is denoted

by ".' and scalar product by . ; thus, the

Euclidean norm IJ x 112=x"'x ..... Equality by

definition is denoted by _ .

The performance index to be minimized is of

=f0 +°° _dt defined in (3) above, withthe type

= _-5 *zv ' (4)

where

CWork performed under NASA Contract NAS 8-11421.

_z _x'cx , (c=c*>0) , (_)

is a given positive-definite homogeneous quad-

ratic form, and w'here each _Z_ = _2M(x) is a
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positive semi-definite homogeneous multinomial

form of degree 2v, (_= 2, 3, 4, ...). (In other

words, _2v(x)->0, and _2v(_x) _H 2v _2v(x) for all

x and all H ->0.)

The system evolves in time according to

= Ax+ a_ , x(0) = x ° , (i =d/dt)

(6)

where x is the system state vector, A is the n ×n

plant matrix, a is the actuator vector and _ is

the scalar control law to be chosen in feedback

form _= _(x). It is assumed throughout that (6) is

controllable, 3 in the sense that the vectorsAi-la,

(i= I, 2,... , n), are linearly independent. Con-

trol laws are admissable only if they produce

asymptotic stability of the equilibrium state

x=0; in particular, it is required that

x(t)-* 0 as t-_ + _ (7)

This stability will be established by explicit con-

struction of a Liapunov function V = V(x), of the

form

= _2v ' (8)
v=-I

where

_0zA= x.Bx , (B = B*>0) , (9)

is a positive-definite quadratic form, where each

_Zw = q]z_)(x),is a positive semi-definite homoge-

neous multinomial form of degree 2_,(v=-2,3,4,...),

and where Liapunov's stability theory l,g is

applicable by virtue of the fact that the Lie

derivative of V(x) along the vector field (6) is a

negative-definite function, namely-Y(x) -(Ba.x_.

In other words, _= _(x) will be so chosen that

whenever x=x(t) satisfies (6),

(x(t))_ -_(x(t))- [g.x(t)]2, (lo)
where

g =a -Ba (ll)

Note that

grad(x) V(x)=Bx+ Z(2-_)gradCp2v(x) '

v=2 (12)

whence, using the definitions (II) and

Ont, _ - a.grad _Zv ' (13)

_2

it is clear that the scalar quantity

2
v=l (14)

can be expressed as

= g.x+ _n_(X) (15)

The quantities _ and _nLare important in forming

the optimal control law _, and the definitions

(13)-(14) and identity (15) will be assumed hence-

forth and used repeatedly in the sequel without
further reference.

To recapitulate, the matrix-vector pair (A, a)

and the functions [_;2vl are given, while the func-

tions [£02_ ] are to be constructed by algebraic

operations upon (A, a) and the coefficients of

[$2v]; then V(x) = v_l (I/2_) <02v(x ) is defined by

(8), and the functions a(x) and _n6(X) are to be

foUnd from the definitions (9), (II)-(15).

The method of computing the {q02v} from the

{_2_} will be prefaced by a special case, namely

computation of <02 = x.Bx from _2 = x.Cx. This in

turn will be motivated by reviewing the well-

known results of Kalman 3 regarding linear

regulators.

Quadratic Performance Criteria

Consider now the case where

= ! _2 = ! x.Cx (16)
Z 2

and choose _ so as to minimize (3) subject to a

"mean-square amplitude" constraint on _ of the

type

l f0 +_ dt f)l = const. (17)

_z

By the Lagrange multiplier technique [absorb the

multiplier into C, by allowing C to be naultiplied

by any positive scalar without loss of generality]

the minimization of (3) and (16), subject to the

constraint (17), can be replaced by the uncon-

strained minimization over _ of

/.

I / [x.Cx + _2] dt= _(xo) =_
a0 (18)

It is well known 3 that the solution to the problem

of choosing _ in (6) to minimize the # of (18) is

given by

,I,= g.x , (g = -Ba) , (192)

rain @ = @(x) = ! x.Bx , (19b)
2

where B = B # > 0 is the unique positive definite

solution of the (equilibrium) matrix Riccati

equation

BA + A*B - Baa* B = -C (20)

Inserting (19) into (6) displays the controlled

system in its "closed-loop form" as a linear

system

= Ax + a_ = Ax , (21)

where by definition

=A A + ag* -= A - aa* B , (22)

and where Ais known to be a stability (Hurwitz)

matrix. On subtracting -Baa _ B =- -gg* from

both sides of (20), and defining the positive-

definite matrix _ by

C =A C + gg* , (23)

equation (20) becomes

BA + _.*B = -C" , (C= C'* > 0) , (24)

which has the well-known solution 5

fo+°B = B* = exp (A't) C exp (At) dt > 0 .

(25)

A highly practical, purely algebraic algorithm

for computing g (without first finding B)is given
by Bass and Gura4; from g, both A and C can be

found readily, and then B can be computed from
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(24) either by the inversion of a matrix of order

I/2 n(n+l) as in Bellman 5 (P- 231), or by the

technique of Appendix 2 below. Alternatively, a

purely algebraic algorithm for computing B

directly from (a, A, C) which involves multiply-

ing a 2n × 2n matrix by itself (n-l) times and then

inverting a matrix of order n is given by Bass 9.

Note that, on recalling cg2 = x.Bx and defining

"_2 _ ;'2 (x) + (g'x)2 g = -Ba (26)

the algebraic equation (24) takes the form [just

premultiply by x'_ and postmultiply by x] of the

partial differential equation

_tx.grad _2(x) = -_2(x) (27)

A Theorem of giapunov

Equation (27) illustrates a classic theorem of

Liapunov l, 2 which shows that if _- is an arbi-

trary stability matrix, and if _2v(x) is any posi-

tive semi-defin_to ho___egencau3 i-**_l_iLxoxniai form

of degree 2v, the partial differential equation

_.grad _2v(x ) = -_2_(x) , (v = 1,2,3,...) ,

(28)

has a unique solution _2v(x) which is also a posi-

tive semi-definite homogeneous multinomial form

of degree 2v. A new pra.ctical algorithm for

solving (28) is given in Appendix 2. Henceforth

it will be assumed that the [q02v] are constructed

from the [_2v} inaccordancewith(28), for

v = 2,3,4....

Summary of Algebraic Constructions

To recapitulate, the pair (A, a) is given

together with the forms[_2v}. FirstB=B(A, a, C)

is constructed so that A=A-aa*B is a stability

matrix satisfying (27} with

q02 = x.Bx , "_2 = x.Cx + (g.x} 2
(29)

Then this Aand the [_2v; v = 2,3,4, ... } are

used to construct the remaining [_02v;v=2,3,4,...}

so that (28) holds. Now V(x), a(x), and _n4(X)

can be constructed as in (8), (13), (14), and will

henceforth be regarded as known quantities.

Principal Results

Consider the choice of _ in (6) to effect mini-

mization of the general _ of (3), subject to the

constraint (17) and an additional constraint of the

type

-'[102 [_nL(X(t))]2 dt _ P2 = const. (30)

The constraint (30) is at this stage admittedly a

somewhat artificial condition, justified only

because it permits an explicit, closed-form solu-

tion of the problem at hand. However, it will

turn out a posteriori that '4ng_(x) happens to agree

with the nonlinear terms in the optimal feedback

control law _(x); hence the physical meaning of

the two independent constraints (17} and (13) is

that the "mean-square-amplitudes" of both the

linear and the nonlinear terms in the optimalcon-

trol law must be a priori bounded separately.

Once again, the Lagrange multiplier tech-

nique may be used to formulate an equivalent

unconstrained problem, namely, that of choosing

the control law _ in (6} so as to minimize the

unconstrained performance criterion

f0 +_ I
= _(x o) A z(x) + 1%2+ I [_n+(X)]2tdt.

= z -_ (31)

It is important to note that ¢1 in (17) andc2in

(30) can be chosen independently and arbitrarily.

At first glance this seems to require an inteTgrand
in (31) of the form _2 +(1/2)k I _2+(1/2)k Z _n_"

However, on replacing '42 by )'1 _2, and ';'2v by

_fkl/k 2 _2v for v _ 2, the quantity X2 '_'n.g 2 is

repiaced by k 1 '¢rn£2. Hence division by X1 yields

an integrand of the form X1 = k 2 = 1, in which now

each _2_,, v -_ 2, has been replaced by

(l/-/kl X2) _'2v. Thus by letting scalar factors

multiplying _2 and %v, v -_ 2, run independently

over all positive values, all constraints 01 ands2

will be attained. (In numerical applications of(18)

it is well known that a factor multiplying C must

be allowed to vary similarly in order to insure

attainment of (17).)

Thcoi _*_i l

The optimal control law for (6) relative to

(31) is given by

= cJ(x) = g-x + _nL(X) , (32)

and, furthermore,

V(x °) = rain _(x °) . (33)

Moreover, the related control law

%' = _to (34)

yields global asymptotic stability of x = 0 for alI

_a such that

> I (35)
2

Theorem 2

Let

> 1 _t > 0 (36)-- , D
2

be arbitrary numbers. Choose e = ¢(a) > 0 so

small that on the neighborhood of x = 0 defined by

V(x) < s (37)

the inequality

Io(x) I < 2 _ (38)

holds everywhere. Then the control law

* = a sat [_lo/_]

yields asymptotic stability of x = 0 on the region

(37).
The practical utility of the preceding results

may be inferred from the application surnmarized

in Appendix 3.

Conclusions

A completely general aIgorithm has been

presented whereby nonlinear feedback laws canbe

computed.which minimize integral performance

criteria defined by muItinomial forms of higher

than quadratic order. A criterion of order 2 v

yields a feedback control law of order 2_- I,

(v = l, 2, 3, ...). These results represent a

generalization of the results of Kalman 3,

Haussler 7, and Rekasius 8.

Minimax criteria can be approximated more

and more closely by increasing v; however, it

does not seem practical to take v very large,

because there will in general be N = n (n+ I) . • •

(n + 2v - I)/(2"0)! distinct nonlinear feedback

terms which must be mechanized.
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Practical experience to date indicates very

satisfactory results with v = 2. That is, quartic

criteria will keep the state variables (or linear

combinations thereofl very nearly within pre-

specified allowable bounds, while the required

cubic feedback control law is feasible to

mechanize.

Appendix I

Proof of Theorem i

The law _ = o provides a unique solution to

the Hamilton-Jacobi equation

_(x,y, _) =_(x,y) = 0 , (39)

-_(x,y) =A max_(x,y, _) , Y =A -grad

(40)

In fact, taking

1 2 1

_ y.Ax+ (a.y) *'-Y--_ * -_*n 2 , (41)

and noting that _/h_ = a.y - _ = 0 if and only if

= a-y = -a.grad ¢ , (42)

while _2_/_2 = -1 < 0 at _ = a.y, one obtains

_(x, y) = _'(x, y, a.y) . (43)

Hence (39) becomes, by'(4Z),

lt_z 1
_:y.Ax+ -_ -_ [,-g.x]2-_=

I_2 1 2
= y.Ax - ¢(g.x) + -_ -_* + *(g.x) +

1
(g.x) 2 Y =

2

=y.Xx- _-!(g.x) z=
2

_- 0 (44)

by (27)-(28), provided that it is possible to

identify V and @ and so use

_=-1 (45a)

= a.y = o = g.x + _n_ (45b)

However, comparing (41) and (44), and using (45),

(39) may be expressed as

V _x.gradV = - _ + _ + -2 n_. . (46)

Thus, by Liapunov's direct method, x(t) "_ 0 as

t-_ +% and, integrating (46), one obtains the

result that _ = j implies V(x °) = _{x°).

Similarly, upon choosing t) = pc% it can be
shown that

= + 1 _ I 02
- [Y _ *n_] - (_/ _) . (47)

This completes the proof of Theorem 1.

Proof of Theorem Z

Assume V(x) < ¢= ¢(_) and [_(x)[ < 2_. Then

it can be shown easily, using V(x) as defined by

(8) and _ = asat (pO(x)/_), that

V(x)=-Y(x)+½c;Z(x)-a_(x)satFU_ x 4 I, 2 x"

(48)

Now consider t_o cases i) and (ii). For (i) let

I(_1/;<) J(x)[ _ land for (ii) let (H/_t) _(x) > 1.

Then for (i),

9= 1 2 [ _i 2

and V < 0 when p > i
2

For (ii),

9 =-_- I _ z _l_z al_n_+_ - ,

and V <0 for Io] < 2_t. This co_pletes the

proof of Theorem Z.

(49)

(50)

Appendix Z

A Theory of Higher Order Forms

Presented here are techniques for effective

use of 2vth order forms. As explained following

(Z8), construction of an optimal control depends

on solving the equation

Ax.grad c_2v(x ) = -_rZV(x ) , (51)

for _&Zv(x). This relation actually represents N

linear equations in N unknowns. It will be seen

in the sequel to (58) below that the dimension N is

N = n(n+l)... (n+Zv-l)
(2v) : (5z)

The unknowns are the coefficients of the different

terms in the 2v th order form _gZv(x ) and the

knowns are the corresponding coefficients in

_2v(x). Thus (28) may be represented by

db= c (53a)

c _\

_c N

, (53b)

where

/bl
b 2

b = " _ ,

/\iN
anddZis an N X N matrix. The bi's represent

coefficients in the unknown C_2v(X ) and the ci's

represent the corresponding coefficients in the

known _2v(X). In order to solve for b it is neces-

sary, in effect, to invert'd _. This could be

accomplished by standard techniques. That is,

just write out the relationships involved and solve

for the bi's. This however would require a con-

siderable amount of algebra even for simple

problems. For example, if n = 5 and 2v = 4, then

N= 70.

As an alternative to solving (53a) in this

manner, one might use the spectral resolution of

U. Thus, seek the eigenfunctions of the

operator.

Ax'grad(x)( • )

In other words, seek homogeneous multinomial

forms _k(X) of degree 2v such that, for (complex)

eigenvalue s Pk,

_x.grad _k(X) = Pk _k (x) " (54)

It will be shown that the _k'S can be formed

from products of linear forms raised to various

integer powers. This idea will now be presented

in detail.
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Let u k be right e igenvectors of A, let v k be

left eigenvectors of A, and let the corresponding

eigenvalues be kk. Then

Xu k = k ku k , (55a)

A*v k = k k v k (55b)

It will he assumed that the k_ are distinct
(k=l, 2, "'', n); then the [ukj_ {v k} are linearly

independent and can be so normalized that

uk.v j = 6kj , (k, j= I,-.., N) . (56)

Once the kk'S are known, the calculation of the

normalized uk's and vk's may be easily accom-

plished, e.g., using the closed form expressions

presented by Bass and Gura 6.

Define _ i(x) by

= ..... , 2 _L_2_L .. (vnx)mn CC_(x) _ (v'.x)--L_ _v .x_ .. • ,

(57)

where the mi_'s are integers determined by

mi_ = 2V , mi _ a 0 (58)

i=l

The expression (58) does not uniquely determine

the mit's. Therefore, let t be an index corre-

sponding to each permissible set [mit]. It is

shown in Malkin 2 that there are N such sets,

where N is given by (52).

Using (57) straightforward manipulations

yield

._x.grad _t(x)---Ax.grad [(vl.x) m16 .... (vn.x) mn_] =

= (Ax.vl)mlt(Vl.x? I_-I.... (vn.x) mn_ +

m m -1 m

+(Xx.v2)m2_/vl.xI l_lv2.x I 2_ ...(vn.x)n_+ .... +

+ (Ax.vn)mn_(V 1 .XF l_" .... (vn.xFn_- 1 :

xF I% (vnxF n_
= (mllkl+m26k2+... + mn6kn) (vl ......

= _ _ (x) (59a)

Malkin 2 has shown that by letting the rail's

range over all permissible values, as given by

58), one does in fact, exhaust all the eigenvalues

_/i} of the operator _x.grad(x)(. ). If it is effec-

tively_)ossible to expand -_2v(x) in the eigenfunc-

tions [_/] then the equation (51) can be solved for

_02v(x) by identifying coefficients in eigen-

expansions. Specifically, if

N

-_z_(X) = Z ¥4_ _t (x) ' (59b)

then

N

_2v(x)= Z (¥%/u%)_t(x). (59e)
4=I

Begin by assuming, for a typical term of

-_2_ (x), m I m 2 m n

kx I x 2 ....x n , k= constant. (60)

Expand each term (60) in ei_enfunctions

as follows. Write for x k m_

mk _ (ek.x) mk (61)
x k =

and then expand e k in terms of the left eigen-

vectors of_. That is, expand e k as

_. v i (k = i,... n) (62)
k

e = gik '

i=l

From the theory of matrices one has

I n = _ vi (ui) '1' ,

i=l

whence

¢Lik = (ui.e k) , (i, k= I, ..., n) (63)

Thus, by using (61), (62), and (63), xF k may be

expressed as

m k {ek,x)m k 'x k = = _ul.ek/_vi.xj . (64)

Recall now that, by (57), the (vi.x) are the linear

forms used to obtain _6(x). Thus, when (64) is

put into (60) and multiplied out, there results the

desired expansion

N

-*2v(x)= _ Bz C_(x) 165)
4=I

In practice, expansion of (60), though straight-

forward in nature, requires considerable sym-

bolic multiplication of multinomials.

A Numerical Example

As an example of the foregoing procedure,

consider the following case whereinn=2. Let

(0 l)_ = - -3 ; then the eigenvalues of A* are

-2, -1; and the corresponding eigenvectors are

(1)1 ands( 2)1 " Now let it be desiredto solve the

equationAx.grad ¢P4(x) = -_4(x) and let _4(x) =

(x I + xz) 4. Then the _k'S and Pk'S are given by

¢1 = (Xl+x2)4' _i=-8=(-2)4+(-I)(0),

C 2 = (Xl+X2)3(2Xl+X 2) , U2=-7 ,

_3 = (Xl + x2)Z(Zxl + x2)2 ' _3 = -6 ,

C4 = (Xl+Xz)(Zxl+ x2 )3 ' u4 = -5 ,

_5 = (2Xl + x2)4 ' _5 = -4

Solving for the coefficients in the eigen-expansion

of _41x) yields

= I
%(x) -_ (x I + x2)4

An Alternative Procedure

In equations (57), (60)-(64), and (65) a

general method was presented for expanding
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-_2(x) in eigenfunctions. Sometimes it is easier

to accomplish this expansion directly without

recourse to the right eigenvectors [u k} of A,

which are needed if (63) is used. Again an

example provides a convenient means of illustrat-

ing this. Let

2 Z 4

_4(x) = x I x z + x z

and let the eigenfunctions be the same as in the

previous example. Then it is only necessary to

write x I and x Z in terms of the linear forms

(x I + x2) and (Zx I + x2). The proper expansions
are

Xl=(ZXl+Xz)-(Xl+X Z) , xz=Z(xl+xz)-(Zxl+x z) •

Define

x I + x 2 _ CL , 2x I + x 2 _ 8=

Then

5

%(x) = (8-a)Z(Za -8)2+ (2a-S) 4 =- _ y_C_.
6= 1

Expanding this expression in &, _3 and noting that

_1 = &4 , _4 = &3 _3

_2 = a2_2, _5 = a_33

_3 = 84

yields the desired coefficients YI' Yz' '''' Y5" -4

Appendix 3
x 3

Simulated Example of Stability Augmentation -_

by Cubic Feedback

Consider the system

Xl = x2 "'

x2 = x3

-10

x3 =-6xi-llx2-6x3 + _n£ (x) "

If we let x I represent position, then x 2 and

x 3 represent velocity and acceleration, respec-

tively. The object is to choose the feedback con- -u

trol _n£(X) so that large overshoots" in velocity or

acceleration are avoided when the initial displace-

ment is xl(0 ) = x0, xz(0 ) = 0 and x3(0) = 0.
-14

As the system returns to the origin x 2

(velocity) or x 3 (acceleration) may be prohibi-

tively large. It is necessary to apply nonlinear

feedback in an appropriate manner to reduce the

offending state. -'6-_0

To accomplish this, we consider the per-

formance indexes _I and #2 where

and

_2 = x3 + -Z + -Z _nf dt .

Minimization of #I or _2 can be effected by cubic

feedback _n6, where _n2.(Ux) m _3 _n4.(x), and

where _n_. is defined by Theorem I and is com-

putable as in Appendix 2.

The feedback control _n_ derived from _I

will keep x 2 small, and the control _n_ derived

from #2 will keep x 3 small. In Figure 1 the

phase-plane plot of x 2 versus x 3 is shown.

Included in this figure is the response of the

stable linear system. The initial conditions for

(i)the responses are x(0) = and x(0) : .
x0

By examining this plot the reduction in overshoot

of x z and x 3 becomes apparent.

/
/

 dT"

\
\

\

X /.

• I J r I
-e -6 -4 -2

X 2

Figure I. Linear and Non-linear

Feedback Comparison
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APPENDIX F

CONTROLLABILITY

DEFINITION

The system

o

x=Ax+aqJ , x(0)=x (T-l)

o
is said to be controllable if for every initial state x , there is a control

1
law 4= d_(t) such that the solution x(t) of (F-l) satisfies x(T) = x where

I
x is arbitrary and T > O.

Theorem. A necessary and sufficient condition for the system

(T-l) to be controllable is that

det(a, Aa, "'', A n-la) = det(D) _ 0 (T-Z)

Proof

1
Part I-- Necessity. (If det(D) = 0 there is an x such that no

o I
control law q_(t)can transfer the system (F-l) from some x to x .)

in general, the solution of (F-i) is

t

x(t) = exp (At)x ° + f exp [A(t- k)la,(k)dk
o

(T-3)

At x(T) = x 1

T

x I - exp (AT)x° = f explA(T - k)]add(k)dk
o

(T-4)

T-1



Now since

i Ak_ kexp (Ak) : k'.

k=O

(F-s)

(F-4) becomes

exp (-AT)xl- _x° - I i

k=0

Ak fT kk ]

a do _'q_(Mdk I (F-6)

Now if

det(a, Aa, ..-, A n-la) = 0 , (F-7)

the system of equations

(a, Aa, ..-, An-la);I=q : 0 (F-8)

has a solution q ¢ 0. Thus there is a vector q such that

• A i-1 (F-9)q a:0 (i: l, Z, -.-)

Note that (F-9) is valid for all i > n since by the Cayley-Haminton

Theorem -AJ(j >_n) can always be expressed as a polynomial in powers

of A less than n - I.

By (F- 6)

q- (exp (-AT)x'- x°) = 0
(F-lO)

But this is incompatible with the choice

x 1 : exp (AT)x ° + q (F-11)

F-2



since (F-10) would then imply

q.q=O q:eO (F-lz)

Thus the system (F-l) cannot be controllable if det(D) = 0.

Part II-- Sufficiency. (If det(D) _ 0 there is always a way of picking a

o
control to transfer the system (F-I) from x to xl).

Choose

_(t) = a • y(t) (F-13)

where y(t) is defined by the solution of

;I-" 0

y=-A y , y(O) =y (F- 14)

Clearly

y = exp (-A*t)y ° (F-15)

and so

*(t) = a • y(t) = [exp (-AT)a] • yO (F- 16)

Thus (F-4) becomes

I o
exp (-AT)x - x

foT ::,
= exp (-Ak)aa exp (-A k)dk

yo
(F-17)

Now define a matrix P by

p __

T

f exp (-Ak)aa:"
o

exp (-A*k)dk (F-:8)

F-3



Then (F-17) becomes

= (_AT)x I opyO exp - x (F- 19)

If det(P) _ 0, the desired control law described in (F-13)-(F-14) will be

completely determined since then

o 1[ o[ (F-Z0)y P- exp (-AT)x I---- -- X

To consider this possibility, note from (F-18) that

T

/ (2)z • Pz = a • exp (-A k)z dk (F-21)

o

Obviously, if

a • exp (-A::"z) _ 0 (F-22)

then z • Pz > 0 and P must be invertible. (The determinant of a matrix

is equal to the product of its eigenvalues and since P must have positive

eigenvalues det(P) _ 0. )

Assume that

a • exp (-A':"k)z --0 , z _ 0 (F-23)

Then by repeated differentiations with respect to k

(A j la) ""- • exp (-A"k)z --0 , (j = 1, 2, --., n) (F-24)

[ ""Now since exp ( -1 = exp (A"k) always exists, exp (-A_:_k)z = 0

can only be valid of z -- 0. Since this is ruled out by hypothesis,

exp (-A"_k)z _ 0 and (F-24) can hold only if

det(a, Aa, "'., An-la) = 0

F-4

(F- 2.5)



Thus if (F-25) is ruled out, P > 0 and (F-Z0) is valid, thus proving the

theo r era.

OBSERVABILITY

Theorem. If

O
x = Ax , x(0) = x _ 0 (F-Z6)

rank IH;:-" _'.- _I: (A;:_)Z ;:-" (A_:_)n-I H_:.J, A'H , H , ..., = n (F-Z7)

Then

li_xll2 _ o (_-a8)

Proof. Assume

II II 0

,Hx, = o , _ _ o (r-a9}

This implies that

Hx -0

dx

H_-T-0

H dx---_2-0

dt 2
{F-B0)

dn- Ix
H -0

dt n-I

However, since the solution of (F-Z6) is

x = exp (At)x ° (F-31)
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(F-30) becomes

H exp (At)x ° -0

HA exp (At)x ° -0

HA 2 exp (At)x ° - 0 (F-32)

HA n-1 exp (At)x °= - 0

If (F-29) is true then {F-32) must be valid for 0 _< t _<c0. At t = 0, then,

Hx ° = 0

I-IAx ° = 0

HAZx ° = 0 (F-33)

HAn-1 ox = 0

(Note: It is now apparent that there is no need to check derivatives of

x higher than (dn-lx)/(dtn-1), for by the Cayley-Hamilton Theorem

A k (k > n) can be found as a linear combination of A j (j = 0, 1, Z, --',

n-l), and if x, (dx)/(dt), .-., (dn-lx)/(dt) are identically zero,

(dkx)/{dtk), (k > n) must also be identically zero.)

o
The equations in (F-33) can all be satisfied by a vector x _ 0 if.

rank

and only if

H

HA

HA2

HA n- 1

< n (F- 34)
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Thus if

H':", ......... 2H* (A':_") n- 1H':" 1rank A"H", (A" ..., , = n

the assumption (F-29) is false and the theorem is proven.

(F-35)

F-7
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APPENDIX G

ULTRAMINIMAX CONTROL

Derivation of the control law that causes q • x to decay exponen-

tially from an initial perturbation.

Theorem I. For the system

o
=_Ax + a_ , x(0) = x (G-la)

= g • x (G-lb)

the relationship

-_t(q.x) = (q.x °) e (O-z)

for arbitrary q and _ holds, if and only if

q .a_0

g = _ I_I + a'_q"
q • a

(G-3a)

(G- 3b)

Furthermore, the closed loop system

x = Ax + a(g • x) = Ax (G-4)

/ \

is asymptotically stable if and only if (q " F(s)a/q" a) is Hurwitz.

Proof. Using (G-4)

d(q" x)= IA* q + (q. a)g} • xdt
(G-5)

G-I



However, if (G-2) is to hold

d(q • x)
dt = - b(q " x)

(G-6)

Combining (G-5) and (G-6) gives

IA='" II q + (q " a)g • x =- b(q • x)
(o-7)

This cai_ be valid ior all x if and only if

g : _ (_I+ A*)q
q • a

(G-S)

Using this control it is possible that q • x can decay according to (G-Z),

while other system variables will grow without bound. To avoid this

difficulty, the characteristic equation of the closed loop system must be

checked for unstable roots before accepting (G-8) as a useful control

law. From Appendix C the closed loop characteristic equation for (G-4)

is given by

_(s) = A(s) - g- F(s)a (O-9)

Applying (G-8) gives

_(s) = A(s) + q • {hi + A)F(s)a/q • a (G-10)

Now since

(s[- A) -1 _ r(s)IZ_(s) (O-lla)

or equivalently,

Ar'(s) = sr'(s) - A(s)I (G-1 lb)

G-Z



Then (G-10) becomes

Z(s) _- _(s) + q " _r(s)a + _ • sr(s)a _ _(s) _ " a
q.a q.a q. a

(G-12a)

or

_(s) = (s + _) n " r(s)a
q • a

(O- 12b)

Thus (G-8) is useless unless (q • F(s)a)/(q • a) is Hurwitz.

Theorem II. Choosing

0 = g " x in (G-la) so as to minimize

to° g[I_ (q" x) g + (g" x)Z]dt (G-13)

2
as D ---co with q arbitrary results in a stable closed loop system iden-

tical to that requiring

q - x = (q" x °) e-Dr (G-14)

if q • F(s)a is Hurwitz (i. e. , ultraminimax control is the same as

2
optimal control in the sense of minimizing (G-13) as b ---co).

Proof. By Appendix C, minimizing (G-13) gives

0 = _(s)_(-s)= _(s)_(-s)+ _g(q " F(s)a)(q • F(-s)a) (G-15)

Assume A(s)A(-s)is polynomial of degree 2n and <q" F(s)a)tq" F(-s)a)

is a polynomial of degree 2m where

m < n - i (G-16)
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Obviously, as _ --,co, 2m roots of (G-15) approach those of

0:(qr(s a><q (G- 17)

The remaining 2n - 2m roots are determined as follows.

From (G- 1 5)

s) z
(q • r(s)a)(q • r(-s)a) = -_

(G-lS)

By long division this can be expressed as

2n- 2m 2n- 2m- 1
s +ks

1 + "'" + kZn-Zm

+ k2n_ Zm+l

-i -2m 2
s + ... + kZnS = -_ (G-19)

where the kWs are constants.

the complex variable notation

Dividing through by
Zn-Zm

s and using

Z k i_ (G-Z0)
-_ = e e

(G- 19) becomes

l+k I
-i

S

k i_

-2n e e (G-Z1)
+ -.- + kgnS - _.?--Zm

S

Now if

i/2n-Zm

s = (eke iw) (G-Z2)

(G-Z1) is satisfied as

the solutions of

Thus 2n-2m roots of (G-15) are given by

2n-2m 2
s + _ = 0 (G-23
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In general then, the roots of (G-15) are given by the roots of

0:<s2°2m+2)(qr(s)al(qF(s)a) (G-24)

If q " F(s)a is Hurwitz and m = n- 1

(G-25)

is the closed loop characteristic equation of the stable optimal system.

This agrees exactly with the ultraminimax system for which

q • x = (q • x °) e -_t (G-26)

Remark. The question arises as to what adjustments can be

made if q .F (s)a fails to be Hurwitz. Consider the equation

(q" r(s)a)(q • r(-s)a) = 0 (G-27)

It is clear that m roots of this equation must lie in the left half of the

complex plane. From these roots generate the Hurwitz polynomial

h

-- i-i_. " S
1

i=0

(G-ZS)

where _ = i, and _. = 0 for i > m. In general,
m 1

coincide identically with q • r(s)a.

Now let

a. =q-S.a
i 1

where q can be determined from

n

q = _Zi(A':")i-I b

i=l

(G-27) will not

(G-29)

(G-30)
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This relationship follows from the identity

b _" "_" ) Sna)':", A'b, ---, (A)n'ib (Sla, Sza, ..., = I <G-31)

which implies

n

= IV = E (_" Sia)(A¢)i-i

i=|

b (G-BZ)

for any vector q. From (G-28) then,

n n

-_isi-I -- E

i=0 i=0

(q. sia)si-l_ • F(s)a (G-33)

w

Thus when q • F(s)a is not Hurwitz, there exists a vector q such that

the polynomial -q • F(s)a is Hurwitz. Furthermore, by the results

derived in Theorem ILl,the characteristic equation for a closed loop

system minimizing the integral

x)z+ (g.x)Zldt (G-34)

is

This guarantees that

b

q. x = (q. x °) e -bLt (G-36)

for all x °. Note that the system for which (G-35) holds will also

minimize (G-13). In a least squares sense, then, q • x is the "closest"

G-6



approximation to q • x which can decay exponentially in a stable closed

loop system.
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ABSTRAC T

FOR

CANONICAL FORMS FOR CONTROLLABLE SYSTEMS WITH
APPLICATIONS TO OPTIMAL NONLINEAR FEEDBACK

by
I<. W. Bass andl. Gura

Using the assumption of controllability, explicit closed form tranS-
formations among four linear canonical forms useful in control system
analyses are derived. The relationships found can be easily programmed
for efficient numerical computation and are also helpful in obtaining further
theoretical results. Indeed, these formula are basic in establishing the
properties of a nonlinear canonical form for bang-bang systems, which on
each side of the switching surface rectifies the state-space phase portrait
of the given system into parallel straight lines. This transformation, in
turn, permits direct integration of the Hamilton-Jacobi partial differential
equation. Furthermore, the feedback law for the classical time-optimal

control problem is shown to have the form of an infinite series of fractional

powers of the nonlinear canonical variables.
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CANONICAL FORMS FOR CONTROLLABLE SYSTEMS WITH

APPLICATIONS TO OPTIMAL NONLINEAR FEEDBACK

by

R.W. Bass

University of Colorado and Hughes Aircraft Company

Culver City, California, U.S.A.

and

I. Gura

Hughes Aircraft Company
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Notational Conventions

a. Matrices are upper case Roman letters.

b. Vectors are lower case unsubscripted or

superscripted letters.

c. Scalars are Greek letters and all subscripted

lower case letters.

d. Exceptions to these rules are i, j, k, L, v, n

which are u_.a a __ zurr-z,_ion inalces or

scalars; F(s) which is a matrix polynomial; s

which is a complex scalar; A(S) which is a

polynomial in s; t which denotes time; and o,

_, e, _0 which are vectors.

e. Asterisks (_) denote matrix transposition.

f. The ith column of the identity matrix is

represented by e i.

g. The symbol =Adenotes equality by definition.

h. Unless otherwise stated, indices will range

over the set 1, 2 ..... n.

Introduction

In the analysis and design of control systems

for autonomous linear plants, the utility of

simple explicit transformations between the given

state variables and certain canonical forms is

well known.

It has been shown by Lur'e [1], Letov [2],

and many others, that use of Lur'e coordinates

facilitates explicit construction of Liapunov func-

tions [3], thus advancing the study of stability of

equilibrium in dynamical systems.

More recently it has been shown by Bass,

Lewis and Mendelson [4], [5], by Wonham and

Johnson [6], [7], [8], by Kalman [9], and by

Bass, Gura and Webber [10], [11] that use of

phase coordinates permits the fruitful application

of frequency-domain concepts to various prob-

lems of system stabilization and optimization

originally stated in terms of time-domain

concepts.

In this paper a system of generalized Lur'e

coordinates is introduced. Unlike the Lur'e

coordinates, these variables are well-defined

even if the system's "open-loop poles" (i.e., the

plant's eigenvalues or characteristic roots) are

not distinct. Although many realistic engineering

problems do not have multiple roots, numerous

highly illuminating examples of modern control

theory can be derived readily when such roots are

permitted. Therefore, the complete generality of

applicability of this last-mentioned coordinate

system is important for both exposition and

research on advanced control problems.

It will be demonstrated below that in both

theoretical research and practical design proce-

dures it is rewarding to be able to pass freely

between the above-mentioned coordinate systems

and the state-space of the given problem. Twelve

different linear transformations are needed.

Unfortunately, certain key inverse transforma-

tions have not been available hitherto in

closed form. It has been assumed in previous

control work that matrices involved are to be

inverted numerically, and thus the needed coef-

ficients were then only defined implicitly. This

has led to awkward circumlocutions (e.g., [6],

[9])and the desirability of closed form algebraic

expressions for the inverses has been widely

recognized. Attempts [8], [12] _t deriving such

cxpz_ions in the past have involved unnecessary

assumptions (e.g., distinct eigenvalues) and their

practical use would (unnecessarily) require

computation of both eigenvalues and eigenvectors;

in addition, these results have no theoretical

utility. Partial objectives of this work are to

1. permit most efficient numerical evalua-

tion of the desired inverses; and to

2. yield theoretical results and new alge-

braic identities which have facilitated solution of

control problems that hitherto appeared formida-

ble, if not intractable.

InPart I below, closed form expressions for

all transformations are displayed in systematic

arrays. These formulae have been programmed

for digital computation and used in the design of

an advanced attitude stabilization system for non-

rigid aeroballistic vehicles which were "flown"

successfully in computer-simulations [13].

Furthermore, some of the new algebraic

identities established in Part I have been used in

roving various new theoretical re sults([ 10],

11], _13], [14] where the identities are stated

but not proved). For example, use of phase

variables in [10] supplies a direct design proce-

dure which is the inverse of the (indirect) root-

locus approach.

A new and evidently important nonlinear

transformation, together with its explicit inverse,

is introduced in Part II by making free use of the

linear canonical forms. This transformation

renders trivial the integration of the Hamilton-

Jacobi equation pertaining to "bang-bang" optimal

feedback control. In fact, the state-space phase-

portrait on each side of the switching surface is

transformed explicitly into a "rectified" flow

along parallel straight lines.

The nonlinear canonical form also permits a

constructive solution of the celebrated time-

optimal feedback regulator problem. It is shown

in Pa'rt ILI that the general time optimal switching

function embodies three features noted in the low-

dimensional special cases previously solved;

namely, the solution is an analytic function of

fractional powers of the system's first integrals

which can be generated on-line by means of

losarithmic amplifiers.

Applications to minimization of quartic and

higher order performance indices are also

considered.

The system to be studied in this paper is of

the type

x = Ax +a_, (l)
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where

= A_ (2)

governs the evolution in time of the uncontrolled

plant, where the letter a denotes the actuato___r

vecto.._r, and where the scalar function _ = _(x)

denotes the feedback control law. In general, the

solution of the system of differential equations (I)

involves the transition matrix e At , whose Laplace

transform is the resolvent matrix (s[ - A) -I

where I is the identity matrix and s is a complex

scalar. It can be shown [4], [15] that this

matrix is given by

(sl - A) -I r(s) (3)
= _(s)

where

2 • V si-Is. (4)
A(s) = det(sl - A) = C_jsJ , F(s)=/, i'

j=0 i=l

and the SI, $2, . . . , S and the C_o, _l, • • • , _n

are effectively computable by the recursion

relations

C_n = I, S n = I , (5a)

1

CIn -3 = -_J trace (ASn_j +i), Sn -j"=C_n -j'I+ ASn_j+ 1 .

(5b)

The matrices S i can be shown [4] to satisfy

Sn-j = 2 _ Ai-n+j (5c)
• i

i=n -j

The controllability criterion of l_alman [9]

is fundamental to the present analysis and will be

assumed henceforth• For the system (i) it can be

expressed in determinantal for_n as

det D _ 0 , D = (a, Aa, . . . , An-la) . (6)

Certainly, if (I) is controllable, the system of

simultaneous linear equations

a.b= 0, Aa'h= 0 , . . . , AJ-la.h = 0, • . . ,

An-2a.b = 0, An-la.b = 1 (7)

must have a unique vector b _ 0 for its solution.

The vector h can be computed by Gaussian

elimination• In general, computing b represents

(I/n) th of the arithmetic labor required to invert

an n 1<n matrix. The key inverse matrix desired

has columns (A=::)i-lb; elementary recursive

formulae then supply the other matrices directly.

The vector b is quite remarkable for several

reasons• In addition to supplying all five canoni-

cal forms presented here, it is fundamentally

related to the magnitude of the linear feedback

signals required to force (I) to behave in any

arbitrary manner [I03.

Furthermore, the vector b is the normal

vector at x = 0 to the time-optimal switchin_ sur-

fac___._eof the given control problem• In fact, it will

be proved that near x = 0 the time-optimal regu-

lator law has the form

_' = - sgn [b-x + P(x)] (8)

where :_(x)/ll x II]-.o as II x I1'0, thusatx=O
the surface b.x = 0 is the tangent hyperplane of

the surface b-x + P(x) = 0.

Part I. Linear Canonical Forms

In this section there will be established a

complete set of explicit transformations among

the canonical forms

Given state variables: _ = Ax +a¢ , (9a)

Phase variables: @ = CO + en_ , (9b)

Generalized Uur'e variables: _= C*_+el_ , (9c)

hur'e variables: _= A_ +u_ , (9d)

where case (9d) is void unless the characteristic

roots k i of A are distinct, where C is the com-

panion matrix to A, namely

0

0

C=

0

-60

and where

1 0 . •. 0 0

0 1 • .. 0 0

0 0 ... 0 1

-<x 1 -a 2 . . . -an_ g -an_ 1

(10)

A=(Xlel, kze2 ..... knen ) , u=(l, I, . . . , I)*.

(ll)

The forms (9a)-(9c) are real• Since the }ti occur

in complex conjugate pairs, it will be shown that

the _i do also; it is easy to put (9d) into a real

form in which the complex diagonal matrix A is

replaced by a real matrix which has 2 × 2 sub-

matrices along the main diagonal and in which

each component of u is either I or 0.

Using symbols to be defined as the outline

of the derivation proceeds, the desired transfor-

mations are as follows•

Coordinate Transformations in

Vector-Matrix Form

x e r.,o (>,i#kj }

x [ x=x e=L*x _=TL*x _= V*x

' x=DT@ e=@ _=T@ _=Z*T@
x=Dq0 @ = T-I%0 %0=_ _ = Z':_

(ki_,j)ix=DWg e=T-1Wg %0=Wg g=g

Coordinate Transformations in

Vector-Scalar Form

x = _'_ @iSia = k cOiAi-I a = k gi ui
i=l i=l i=l

• i-1

@i = (A'_:)I-I b'x = _ 8j_j+n-i+l = _ _ gj
j:o j:l _' (xj)

All of the transformations depend directly on the

basic identities

L -1 --g [(b, A*b ..... (A':_n-lb)] "1-= (Sla, Sza ..... Sna)'::

(lZ)

D-I _ [(a, Aa ..... An-la,]-I -= (S:lb, S_b ..... S:'b)':",

(13)
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where

T = T _:=A
=

o. 1

c_ 2

_n-I

1 0

The inverse of T is

0

T-I =

iO1 1
B1

(L-I) _:_---DT ,

c_2 C_n-1

_3 1

0

0

F

0

0

0

°II1 61

Bn_ 3 6n-2

Sn-2 _n-lJ

(14)

(15)

(16)

where the 2i are defined by the Laurent series

1 :Z -_- (Isl >maxlXil) (17)
a(s) j=0 sn+j '

and can be calculated by the recursion relations

t-I

8 o = I, B£ = - Z aJ +n-& 8j, (£ = I, Z, . . . , n) (18a)

j=0

t+n- 1

_t+n = - Z _j_£Sj , (£ = 1, z, 3.... ). (18b)

j=t

To prove (12), consider the equivalent form

e i = (Sla , S2a ..... Sna)_:_(A_':")i-lb, which, under

row by row expansion and application of (5c) can

be expressed as

n+i -j

a_:_ Z C_k+J -i(A_:';)k-lb = 6iJ (19)

k=i

Now from (7) expressed in the form

5kn = a_:'_(A::_)k-lb , (20)

it is easy to show that (19) is valid for l_k_n, or

when j->i. When j<i expand the left side of (19)

into two parts, the first consisting of the terms

for which i_k<n, and the second consisting of the

remaining terms (n<k_n+i-j). Then by using-

(g0) in the first part, and the Cayley-Hamilton

Theorem in the second, the proof can be

completed.

The identity (14) follows directly from

explicit expansion of the matrix product DT and

application of (5c) and (12). Similarly, identity

(13) comes from the expansion of LT and the use

of (5c) and (14).

The relationships (18) can be verified by

manipulating (17) into the form

I -= _ _iSi+v_n s -v (21)

v=0 i=max(n-V, 0)

and then comparing coefficients of s-V on both

sides of the equation. Using (18a), (16) can be

established by direct matrix multiplication of T
and T - i.

A. Phase Variables (6)

Consider the output of interest for the sys-

tem (1) to be

01 A= b.x (Z2)

By alternately differentiating (22) and applying (I)

and (7), the relationships

di-l@l . Ana
-- = (A_:_)i-i b.x , - -.__J.l= (A,:_)nb.x+ ,_

dt i- i dtn (23)

can be established. Then, multiplying the jth

derivative of 01 by %, summing over

j = 0, i, 2 ..... n, and applying the Cayley-

Hamilton Theorem gives

i dJ01aj --= A(d/dt)61 = $ • (24)
dt j

j=0

Upon defining the state variables (91, @2 .....

@ n by

@i = di-I 61/dti-I ' (25)

the n th order scalar differential equation (24) can

be expressed as the first order matrix system (9b).

On combining (23) with (25), it is obvious that

@ = [b, A_:"b ..... (A_:_)n-lb]x= L_:'_x . (26)

Note that applying this directly to (I) and com-

paring the result with (9b) shows that C= LA(L::9 -I.

The identities of (12), (13), and (14) can be used

to give the explicit inverse of (26), namely

n

x= (L_:_ -I e = (sla , Sza ..... Sna) e =_@isi a, x= DT@ .

i=l (2v)

B. Generalized Lur'e Variables (_0)

Let

_ A D-I ._ x = TL#x (28)

Then (i) becomes

$ = (D -I AD)_ + D -I a_ . (29)

Upon forming the product DC::", and applying the

Cayley-Hamilton Theorem to the result, it
• _,c - I

becomes obvlous that C' = D, AD. From (13),

it can be shown that D -I a = e _, whence (29)

is equivalent to (9c). Combining (28) and (13)

gives the inverse transformations

[0i = (S$_b) • x ,
(30)

n

An- la)_x = D_ = (a, Aa, ... , =>_<Pi Ai-la •
i

i=l
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To find the relationship between _o and 8 apply

(27) to (ZS), obtaining

ca = T@ , 8 = T-lop (31)

The corresponding vector-scalar formulas shown

in the table above can be derived directly from

these relations and the basic properties of the cti

and 8 i. The details are somewhat involved but

quite straightforward.

C. Lur'e Variables (_5

Consider the ca coordinates for a system with

distinct complex eigenvalues _'i, (i = l, g ..... n).

Multiplying both sides of the vector system (9c)

by the transpose of the Vandermonde Matrix

Z = (z l, z Z ..... zn),where

n

zi = E (ki)k-I ek ' (325

k=l

and simplifying the result by using A(ki) = 0

yields

>'i caj=
j=l j=l

Defining a new vector _ by

a Z'ca (34)

or equivalently,

j=l

(33) yields (9d). The inverse of the matrix Z*

can be shown to be W = (wl,w 2, ... w n) where

w i = Tzi/A'(ki ) = A,(ki) ctk e k-j+l , (36)

j=l k=j

with A'(ki) denoting the polynomial d(A(s))/ds

evaluated at s=k i. Clearly then

= W_, W = (Z*) -I (375

The relationships between _ and 0, namely

@ = T -lw_ , (38a)

= Z':_T 8 (38b)

follow from (37), (31), and (34). Details of the

development of the corresponding vector-scalar

forms are omitted.

Combining (30) and (35) the relationship

between x and _ is seen to be

= V*x , gi = vi'x ' (39)

where

n

v;(vlvZ......n5vi:X  iS b=r*, i)b
j=l (40)

Alternatively, from (14), (30), and (34),

= Z* TL*x, so that

V = Z:::TL * (41)

By (145 and (37), the inverse relationship is

x = U_ , U _A (Z-_;TL.)-I = DW (42)

Expansion shows the ith column of U to be

ui= _ A'(xi)ISja=_ a . (43)
• i'

j= P

D. An Alternative Generalization of the Lur'e

Variables (_(s))

The identity

2 2LX(rl) - A(_a) _ (r / -_t) i-1 ay.j-i (44)

i=l j=i

can easily be verified by equating coefficients of

like powers of r_ and _ where these quantities obey

the commutative and distributive laws of aigebra.

With no ioss of generality, rl can be identified

with sI and la with the matrix A. Then, by the

Cayley-Hamilton Theorem and the definition of

r(s),

A(s)I = (sI - A) F(s) (45)

Indeed, (3) can be found directly from this rela-

tionship whenever (sl - A) -I exists. Multiplying

(45) on the right by the vector a, applying the

definition

u(s) A F(s)a
= a(s) ' (46)

and using (4), it can be seen that, identically in s,

Au(s) = su(s) - a , (47a)

I

u(s)'b = A(s) (47b)

Similarly, considering (44) again with A* as _,

and using

v(s) =A r*(s)b , (48)

the identities

A_:_v(s) = sv(s) - A(s)b , (49a)

v(s).a = 1 (49b)

can be derived.

Now define

u i A= lim _ u(s) ds , (50a)
p-_0

Is-_iI:_
i A

v = v(k i) = r(k i) b , (50b)

and note that when the ki are distinct,

i r(xi)
u - A,(ki) a (50c)

Applying the contour integral operator of (50a)

to (47a b), and inserting s = k i in (49a, b), one

obtains, for the case of distinct k i,

Au i = k i u i , ui-b = I/A'(ki) , (51a)

A::;vi = k i v i , vi.a = l (51b)

Furthermore, comparing (50c) with (43), and

(48) with (40), it becomes clear that the columns

of U are the eigenvectors of A normalized by the

scaling requirement ul.b = I/A'(ki), and that the

columns of V are the eigenvectors of A _:"

normalized by the scaling requirement vl.a = I.

Since standard digital computer routines do not

normalize the lengths of the eigenvectors u i and

v i in this manner, care must be taken to multiply
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u i by [I/(ui-b)&'(ki)], and to multiply v i by

[I/(vi.a)] (which is permissible since neither

denominator vanishes, by the hypotheses of

controllability and distinct roots). This discovery

that the Lur'e canonical form is precisely equiva-

lent to the standard diagonalization procedure

when normalized as in (51a, b) is practically

useful in numerical work.

Note that (39) can now be generalized, using

(48) and (30), to

_(s) = v(s)'x = _si-l_i (52)

i=l

Then, taking the scalar product of v(s) with the

system (I) and applying (49a, b),it is found that

v(s)._= x*(sv(s) - a(s)b)+ * (53)

Now using (52) and (23), the above becomes

_(s) = s_(s) - A(s)e I + * , @ I = b.x=q) n . (54)

In Part II the system (I) will he considered

in the form (54), which is equivalent to (9c) and

may be regarded as another generalization of the

Lur'e canonical form. In fact, when the eigen-

values of A are distinct, _i = _(ki), and, setting

s = k i in (54), the Lur'e system (9d) is

recovered. On the other hand, whether or not

the )ti are distinct, the identity (54), which, in

appearance, is highly reminiscent of the Lur'e

form, can be regarded as the collection of n

differential equations obtained by equating like

powers of s on the right and left hand sides.

Then, on inserting (52) into (54) and comparing

coefficients, the canonical form (9c) can be

recovered immediately. It is for this reason

that (9c) was called the "Generalized Lur'e

Canonical Form. "

Part II. A Nonlinear Canonical Form

In this section it will be shown that the (real)

systems

:_ = Ax + a¢ , (e = ±I) , (55a)

and
% = ee n , (¢ = ±I) , (55b)

are related near x = (7 = 0 by the uniquely recip-

rocal (real) transformations

1 @f sj - 1 ¢

:-- i n_SJ_--r'-Vs1°g[l+es_(s)]ds ,
(Jj

2"r[,/_ Is =P
(56a)

g(s)= v(s).x ,

X =-

z'#:_l { L J I (56b)

where the path of integration is a circle enclosing

all the roots of A(s) = /_()'i)= 0; that is,p>maxl),il.

For systems with distinct eigenvalues, (56a) and

(56b) become, respectively

2 I
= A'(ki) , i

i=l (57a)

x = i_l --_xi exp c_+Lki_+lo v -i u i

v=! /.=0 J (57b)

Furthermore, it will be shown that the transfor-

mation (56a) can always be expressed byaneigen-

function expansion

O i = _ B_¢£+n_i+l(<0 } , <Pj = (S'_b)'x (58)

t=O

where the f_l satisfy (18), and the eigenfunctions

w.0 = cV(_p} are multinolnials of degree v in q0l,

q°2 ..... _n, also recursively computable by

v-I

e _-_ . (v=2 ..... n),_1=£01 ' u:v=_'0-_ m°Jm_V-m '
Z--.-3

m=l (59a)

# ' (xJ=l 2,3 .... ).
¢

cvv+ n = _ v+-----__ (X)+n-1)_iaV+n-i , ,

i-! (59b)

Note that 8L = _£(A), and <0i =q?j(x) =cpi(x; A, a) but

that the multinomials u) v ='cuv(_0) depend only on

the dimension n of the system and therefore can

be computed and tabulated once and for all.

The transformation (56a) also can be

expressed by a power series expansion

oj = (A*) j- 1

where

0

Ol _ (D-I)* 0

l

Bl

Qj+I -&- A*Qj ,

1 (x.Qjx) +b.x -_c ....

0 ... 0 1 sI-

0 ... 1 B 1 8z

0 ... BI S2 S3

81 "'" 8n-3 @n-2 Sn-I

_2 "'" _n-Z 8n-I 8n

(j = 1, Z ..... n-l}

(60a)

D-I

(60b)

(60c)

In the case of distinct roots k i, alternative

expressions for the power-series coefficients are

(A*}J-lb 2 ()'i)j- 1
= _ v i , (60d)

i=l

Qj (A*)J-1 Q1 i (ki)j vi(vi)* (60e): : a,(xi)
i=l

The authors have simulated approximately

time -optimal systems of order n = 2, 3, 4, 5 on

analog computers by each of the three nonlinear

canonical form approaches (57a), (58), and (60a),

and have experience in the numerical use of (18),

(59a, b), (60b, c), and (60d, e). On combining the

complex conjugate terms in (57a), it can be seen

that on-line mechanization of clj can be effected

in an analog control-computer using nonlinear

amplifiers which over a suitable dynamic range

provide the logarithm, exponential, sine, and

cosine. Use of solid-state devices of known

nonlinear characteristics (e.g., Zener diodes},

or piece-wise linear approximation of the oj by

biased-diode function generators may prevent

_y.]= [(A*)J -1 b].x + ... for holding for small

Ilxll. Therefore (60a}is desirable for small

Itxll. However (60a) in the form <Jj -_ [(A*)j-lb]'x

does not yield stability in general (unless the

vector b is "tilted" to compensate for the absent

quadratic and higher terms_ nor does even the
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form aj _--- [(A*)j-lb].x 1- _ e(x. Qjx) yield asymp-

totic stability for unstable plants unless Q1 is

modified slightly for similar reasons. The fact

that the required modification in Q1 is less than

that needed in b suggests that perhaps extension

of (60a) to include the cubic terms in x would

constitute a practically adequate (locaI) mechani-

zation of (57a). The truncation properties of (58)

are quite different. Recalling that 8 o = 1, and

defining p >maxlkil , it can be shown that as

P-*0, By-*0 for v = 1, 2, 3,.... Whenk 1 = kg = ...

=k n = 0, _i -= mn-i+l (<9(x)) and the truncation of

the series (58) at its first term is rigorously
valid.

The nature of the preceding transformations

depends on the theory of "integrals" and "iso-

chrones." A first integral of the n th order system

= f(x) x(0) = x ° (61)

is a scalar function _(x) such that

_[x(t)] _- _(x O) , or f(x).grad _(x)-=0 (62)

is satisfied along any solution of (61). Geomet-

rically, (62) defines an integral surface such that

,any state space trajectory initiating on it must

remain on it for all t. The term "integral" is

used interchangeably for the function _(x) and the

surface _(x) = constant.

An isochrone is a surface defined by setting

the scalar function y(x) = constant where y(x)

satisfies

y[x(t)] -= y(x O) + t , or f(x)'grady(x) -= 1 (63)

Fhe time for points on various trajectories to

move between fixed isochrones is constant; hence

the term "isochrone. " Here also, this term can

refer to either the function y(x) or the surface

y(x) _ constant.

The following basic properties of integrals

and isochrones are readily proved.

1. Any arbitrary function of integrals is

also an integral.

2. Every integral of an n th order system can

be expressed in terms of any n-1 functionally

independent integrals in the neighborhood of a

non -equilibrium point. (Proof is analogous to the one

of [16j, p. 115.)

3. The sum of an integral and an isochrone

is an isochrone.

4. Every isochrone of an n th order system

can be expressed as the sum of an arbitrary

function of n-I functionally independent integrals

and any particular isochrone.

Clearly, the oi, o z .... , On_ 1 defined by

(55b) are first integrals of (55a),while crn is an

isochrone of that system. It will be shown below

that as a consequence of controllability the O1,

(3Z, ... , O n are indeed functionally independent so

that all of the above properties apply to these

functions. The transformations discussed here

can be viewed as methods of generating integrals

and isochrones for (55a), instead of relationships

between canonical variables. This alternative

viewpoint is fundamental to analysis of the time-

optimal problem.

A. Transformation from x to

Differentiate (56a) and apply (54) to obtain

' F 2]
_. = ¢ 0_ s J-I _s_(s)+¢ Jds

J ""'_--J-Z-F'lsf=__ 1+_sg(s)

1 f sJ-191 ds
" Z_ J-i-[ i +¢sg(s) (64)

Jsl=p

Now, by complex integration as P-*_, the first

term of the right side of (64) becomes

¢ f sJ-1_ = C6jn (65)
Isl=p

while the remaining term can be expressed as

z- J_ Is I=p k=0 (66)
if 10g(0)l<l- (Note that the condition 10g(0)I<l can
be obtained as a constraint on llxll by applying

(52) to obtain ] _ll<l/_V<p) where-_ is the upper

bound of Ilv(s) I on Isl = 0.) The above result is

obvious, since the integrand is analytic in s.

Thus (56a) does indeed yieId (55b) when applied

to (55a).

B. Transformation from c_ to x

The simplest proof of (56b) seems to be that

in which (57b) is proved first, independently; and

then used to establish the more general result.

Consider (57a) and define a vector q such

that each component is given by

e 1

qi - A'(Xi) k i log [1 + ckig i] (67)

Then (57a) can be expressed in vector-

matrix form as c_ = Zq, where Z is the

Vandermonde Matrix (31): Applying the inverse

of Z, (36), q = W*(J, or ql = wi.O, and (67) can be

written as

_i= _i I exp [¢kiA'(Xi) wi'°l -I I (68)

By expanding w i as in (36) and rearranging, (68)

becomes the first desired result (575).

Now define a transformation x = h(CI, g) by

(56b). Using the Calculus of Residues, it is

clear that (57b) is equivalent when the k i are

distinct. A/so, for distinct ki, (56a) and (57a)

are equivalent. Hence it is certain that (56b) is

the inverse of (56a)_ at least when the k i are dis-

tinct. It will now be shown that this proposition

is valid for all systems, even when the k i are

non-distinct. To accomplish this, consider (56a)

in the form (3 = p(x;¢, A, a) and define A to be

when the roots of its characteristic poly-

nomial A(s) are distinct. It is well-known that if

A is not simple there are simple matrices A o

such tl_at IIA-Aol I is arbitrarily small. Thus

it has been shown that there exists a function

h(cI; e.A a) namely(56b) suchthat h(p(x;e,A, a);

g, A) _/_ix;_', A, a) _x is valid whenever A is sim-

ple. Now take A non-simple. Let [AM] be a

sequence such that Avis simple for each v=1,2,3 ....

and such that Av-_A as v-_=. Now the integrand

in (56a) is a continuous function of x, A, a,
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and e since v(s) is a polynomial in A, a, and

I/&(s). Recall also that i/A(s) is an infinite

series in powers of s -l, which converges for

I sl>max(ki), whose coefficients a .... tional

functions of A. Thus p(x;¢, A, a) is a continuous

function of all its arguments. Clearly, an analo-

ous result can be obtained for h(o;¢, A, a). Thus
(x;¢, A, a) is continuous in all arguments and so

/_(x;¢, A v, a) 4_(x;¢, A, a) as v -_=. But since

/_(x; e, Av, a) =- x, it follows upon taking the limit

that'(x; e, _ A, a) = x. This completes the proof

of the validity of (56b) as the general inverse of

(56a).

C. Expansion of cr in Series of Recursively

Computable Multinomials

Consider the Taylor expansion

e log (i + ¢sg(s)) = e [_f=_nJ (6_)

j=l

whichholds for les_(s)l<l. Since, by(52), [.(s)

is a polynomial in s, the right side of (69) must

be an infinite series in s and so

2
¢ log [i + ¢sg(s)] = r_jsJ , (70)

j=l

where the coefficients a)j, (j = i, 2, 3 .... ), are to
be determined. To accomplish this end, differ-

entiate both sides of (70) with respect to s, apply

(52) and simplify, obtaining

rain

n = 0_ (k-l, n)

i=I j=l k=2 i=l

(71)

Then, equating like coefficients in (71), the

recursion relations (59) can be established. Now

note that, using (70), (56a) can be expressed as

1 _ s i-I I "

_i = 2rT _i-ls_=_ _ s j=IZ _tjsj as (72)

From the series expansion of i/L(s) given in

(17) and the Calculus of Residues, (72) yields the

desired result (58).

Example: the n-Fold Integrator

The system

dnal/dtn _ a[n]_i = ¢ (73)

was treated by Lewis and Mendelson [5] for

n = 3, 4, but no systematic procedure for calcu-

lating the integrals and isochrones of (73) was

given. By application of (58)--(59), it becomes a

simple matter to do so. Since the characteristic

equation for (73) is A(s) = s n, Cto = ct1 = ... =

Ctn_ I = 0. Then from (18) it is clear that 3._ = 0,

(_ = I, 2, 3 .... ), and so (58) becomes oi= J,n_i+l .

Also, by the vector-scal@r relationships between

:4!and 0, _i = 0n_i+ I = d Ln-l], (i = i, 2 .... , n).

Thus (59) yields

cJ = _[n-i ] (74a)
n 1

1

n-i

[i-l] ! Z mo G[i+m-i ]1 - n-i+l n-rn+l _ 1

m=1

(i= I, Z ..... n-l) (74b)

D. Power Series Expansion of

Expressing the integrand of (56a) in a power

ser_es in _, and applying the expanded form of

(38a) and (Z3), results in

O. = (A*) j-1 b'x - 1 e i _ ig(hi)j-1
3 _ ,,,i , )vi_- + ....

(75)

i=l

for ]Xigil<l. Define Qi as in (60e) and apply (39)

to (75) to obtain the qua"dratic terr_s in thc foa,_

-!/2c(x-Gjx). .the relationship A*Qj = Qj+I

directly follows from (60e) and (51b). To obtain

a more explicit representation of Q1, note that

on using (41) and (14), (60e)'(with j=l) can be

expressed in the form

QI = (D-I)*E D-I ' (76a)

E __g _ z i (z_) "" (76b)

i=I

Then by (32) and the relation

._-_(ki)J- 1
v ,,--vTCW,, = B. (j = 1, 2, 3 .... )
Z__a _ i) j-n

i=I

(obtained by contour integration of

the ('_,gt)th element of E is

eV'Ee_ = i(k_ -I= _v+_-n '

i=l

(77)

sJ_l " ,
A--_" as )

Isl=_

(V, 1O.= 1 ..... n).

(781

Thus (60a) is verified for systems with distinct

eigenvalues. To generalize the above proof, note

that (56a) is analytic in a neighborhood of x= 0,

and so there must exist vectors £z = ,51(A,a) and

matrices Ri(A,a) such that

£J -x i
Uj = - _ C (x. Rjx) + ....

(79)

for all A. Furthermore, £i (A, a) and R i (A, a)

are rational functions of the elements of (A, a).

But the expressions in (60b, c) are well-defined

rational functions of (A, a) whether or not A is

simple, and it has just been proved that

$-J = (A*) j-I b Rj = (A*) j-1 Q1 ' (80)

whenever A is simple. Hence by the continuity

argument used after (68) the relationships (80)

must remain valid for all matrices A, simple or

not.

Previously, it was claimed that the elements

of.g are functionally independent at x= 0. This

can be proved by means of the series representa-

tion for c_. The Jacobian Matrix for the trans-

formation in question is, by (60a), L= (b, A':=b,

.... (A':=)n-lb. From (14), however, detL=detD,

hence L is not singular if the system (1) is

controllable.
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Part Ill. Optimal Nonlinear Feedback Control

Imposing an inequality constraint upon the

control function ',',consider the problem of

choosing 4 in

= ax + a_ , I*]_1 , x(0)=x ° ,

so as to minimize a performance criterion

.T
i

= _(x°) =In }_(x) dt , (_>0 if x#0)
i

where the stopping

by x(t)40 as 0_t-_To

(81)

(8Z)

time _- = T(x°)- <+_ is defined

The Hamilton-Jacobi Equation and Liapunov

Stabilit_y

Assume that an optimal control law ? = *(x)

is known, and that ¢(x) and T(x) are continuously

differentiable. Obviously (82) is a solution of the

partial differential equation

$ _= (a_ + a_).grad ¢ = - _(<0 ifx#0) , (835

because d#(x(t))/dt = $(x) when x(t) satisfies

(81). Similarly, if _{(x) and 4(x5 are such that

(83) has a positive definite solution {(x)>0 if

x_0, with__s ]['x[["++% then either

there exists a stopping time T, or else (if _ is

not everywhere continuous) a time T_(x °) such

that the solution of (81) cannot be conventionally

defined for t>ro_. (For the theory of "chattering"

or "after-end-point motion" or the "sliding
regime," see [17].) Note that (83) canbe

expressed as

9d = IV(x, y, ¢) = 0 , lVA_ y-(Ax + a*) - }g(x) , (84)

y = - grad ¢(x) (85)

Principle of Optimality and the Maximum

Principle

If the problem (81)--(82) has a solution then

the Maximum Principle, which has been proved

rigorously [18], asserts that as a necessary

condition there exists, for fixed x _, a function

y = y(t) = y(t;x °) such that not only (84) holds,

but moreover

= _((x, y) = 0 , _ = max _(x, y, 4) • (86)

I*l_l

= grad(y)JV(x, y, 4) , _r = - grad(x)JV(x , y, _5 •

(87)

However, (85) is not claimed to be necessary.

Starting from the valid Principle of Optimality

[193, a formal, heuristic argument indicates that

(84)--(85)--(86) are bothnecessary and sufficient.

But rigorous study of (84)--(87) is difficult. Ciearly

(86) implies that

• = sgn[Cro(X )] , Oo(X) _& - a.grad _ fi 0 , (88)

whence there is a hypersurface, _o = O, along

which i'(x) is discontinuous; on either side of this

surface, _ is a constant. It is easy to prove that

if _ satisfies (84)--(85)--(86) in the complement of

the set O_(x) = 0, then the known necessary con-

dition (87 u) is a corollary. However, the defini-

tion of ¢ on the set _o =0 is difficult, as is the

extension of the just mentioned result about (87)

onto the set cr o = 0. In some problems 4 must

be given the value + I or - I on various portions

of the set (7o = 0, so that _o = 0 constitutes an

integral surface. Other problems Ill] allow

two equally valid alternatives: (i) _'_'can be

defined as a continuous function such that _o = 0

is an integral surface; or (ii) _ can be regarded

as zero on o o = 0, and yet the "chattering

regime" governed by (88) yields an x(t) identical

to that of (i). This phenomenon is connected with

the singular solutions of (81)--(8Z), along which

a-y(t) _ 0, and singular surfaces of (84)--(86) on

which a.grad _(x) = 0. Choosing alternative (ii)

unifies the two kinds of problems under the

subject of bang-bang control, wherein

= Ax + ac , _ = c(x) , sZ _-- 1 (89)

Denoting (56b) by x = h(_), and defining/_(_) A

_(h(o)) and_(o 5 _ }_(h(o)), the system (89) =

becomes (7 = een and the equations (84), (85) and

(885 become

^

(_#/_On) = -c}_ (_) , (90a)

^

£ = - sgn [5#/_On] (90b)

In this new form, the main import of the

Maximum Principle, (90b), is equivalent to a

much simpler idea, namely that _'is a positive

definite Liapunov function for the bang-bang con-

trol system (89) which (before chattering) is

"stable" by virtue of having -@ as its negative

Lie derivative. Solution of (90) is trivial and

yields as the general solution of (84)--(865

= _o(Ol(X, _) ..... On_l(X, e)) +_l(c7(x, c)) ,

(91a)

°°_1 (e5 = - _(h(_l' _2 ..... _n-l,bt)) dbt ,

sZ = 1 , (91b)

where 4 o = #O(Ol, ... , c:n 1 ) is an arbitrary func-

tion of its n-1 arguments. -Assuming _(x) con-

tinuous, any surface of discontinuity of s(x) is

constrained by the requirement that #o(O(x, -1))+

_l(d(x, -I)) = ¢o(O(x, +I))+ el(Or(x, +l))for x on
the surface.

Quadratic Performance Criteria

In [Ii] itwas shown that if_= i/2 x.Cx is a

positive-definite quadratic form, then for x suf-

ficiently near x = 0

e = sgn [Clo(xS] , C7o = - (On - sn(°l ' (J2..... (Jn-l))

(9z)

for a suitable function _n" Also there exists a

non-negative definite matrix B such that, in (91),

1 h(Ol _n)'Bh(° I .... _n)_o: _ ..... On-l, ,On-l,

- #l(al .... ' an-l, }n) • (93)

Time-Optimal Control

WhenX[--- 1, the celebrated time-optimal

problem is obtained. It will be shown here that,

near x = 0,

e = sgn[go(X)] , (JO = - ((71 -¢2((J2 ..... On-l)) ',

(94a)

^ ^ A =
cri= ai(x, e), ¢ = _.(x), _Z l, (i= 1,2 ..... n-i),

(94b)
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(®2z,_×_,)-.o"" as I1_11_o , (94c)

where _Z(o2 ..... On_l) is an analytic function of

fractional powers of its arguments, and where
e(x) is characterized on and off the surface

Oo(X) = 0 by

¢ = - _ o ° _ 0 , (94d)

¢ = _ a = 0 (94e)
' o

It is known [19], [18] that for linear controllable

n thorder systems with real eigenvalues, time-

optimal control can be effected by at most n-1

switches of a bang-bang control ¢. For systems

with complex eigenvalues, this result remains

valid for initial conditions sufficiently near the

origin in state space. Thus the state trajectory

of (89) originates at x ° with a specific ¢, say

¢o = ¢(x°)' When x(t) crosses the switching sur-

face, the system is governed by

= Ax - a e (95)

during the next arc of the trajectory. Thus, the

optimal switching surface for (89) is an integral

of (95}, which therefore must be some function of

_l' OZ'"" "' On-l"

The solution of (95) is

t
I,

x(t) = e At x I - /^ ¢ e A(t-_) ad_ (96)

-u

If x 1 is on the switching surface, then

At n-2 [ftj+ 1 ]
0=e n-I xl I (-l)J+l eA(tn-l-_)¢ ad_ ,

j = 0 Iftj
(97)

where to is the time at which x(t) enters the sur-

face, where tl, tz, .... tn_ z are the subsequent

switching times, and tn_ l is the stopping time.

Solving for x I and applying the convenient

substitution,

T. A -t (j = 0, 1, n-l) (98)
j= n-j-I ' " ....

yields

l ,l)nf J['Tnj/+l
x (v+l)1 (-It

v=O j=O

-(-Tn-j- I )v+ I]AV a (99)

Thus, taking to = T n_l = 0, the parametric form

of the switching surface is

)n-I Z ^x=x(T)=n (-I e _PV(T) A v-I a , (I00)

v=-I

^ _ I v v (I01)
q_v (T) = v"q. o + 2 (- Tj

j=l

The tangent hyperplane at x = 0 is given by q.x=0,

where q is the unit vector whose scalar product

with (I00) identically removes the terms in ToY ,

TI w, ..., TnV2, _v = I, 2, ..., n-l). By (7) it is

clear that q = b/ I [b[l as claimed in (8). Thus it

is seen without further calculation that the

integral surface a o = 0 must be expressible in

the form 01 _2 "_
% = o(llxl[)..(% ..... On_l) =0, where

The gerreral pr.operties (94e) of the a_

switching function _ = _(x) are obvious. The

detailed procedure for calculating _(x) and

_2(02 .... , On_l) is based upon simplification of

(100)by means of (56a). First (52), (7), and

repeated use of (49a), yield

_(s)=(-1)n-le q_v(_) s - A(s) (b.(A*) a) s j- .

v=l k=l
1102)

Then, with (69) and the Calculus of Residues,

(56a) becomes

Isl=p j=t l

-1) n-1 e ds , {103)cpv(T ) s v

v=-I

or equivalently, if [s_(s)J<l,

oj- 1 / sJ-1 ¢ log(1 + es _(s)) ds- _-_7_ '
Z---_ 1-_ 1 _ =O (104a)

^ (_l)n-1 _ ^ vg(s) =A ¢ q_v (T)s (1045)

^

Defining uuj, (j = 1, 2, 3 .... ) by

1)n-1 ^ _. ^ j-1(- log (1 + e sg(s)) A w.s , (105)
= l

j=l

and proceeding as in Part IIC, the new para-

metric form

I A(-I) n-I e cr i = 84_t+n_i+ 1 (T) , (106a)

_=0

^

_l = COl(T),

V-I

^ ^ (_i,*_-I X-_- ^ ^

wv = _v(T) + "_ Z mWm_PV-m(T) '

m=l

(_ = 2, 3, 4, ..) , (106b)
can be derived. Tnefunction _ is defined by

solving (106a) for i = 2, 3 ..... n [20] to get Ti,

(i = 0, I, 2, ..., n-Z) as functions of g2, "'', (In

and noting that T i are real and such that

T_<T.< <T .< 0 Since the o i are integralsu l "'" n-_ "
for (i = I, 2 ..... n-l), they are unchanged by

letting Tn. Z -_ 0. Now eliminate [20] the n-2

parameters To<Xl< .... ,<_ 3 between the (n-l)

equations (106a), for i = 1, _] .... n-l, obtaining

o I = _2(o2, . .., On_L) where _2 is an analytic
function of fractional powers of its arguments.

Clearly o O = ±(o I- #2) where the choice of + or

- is unchanged by continuous variation of A or a.

When A(s) = s n, as in (73)-(74) elementary argu-

ments show that Oo= -@l + . . . whence cro =

-(o I - _2) in general.
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